2006) Interestingly, BP86-optimized geometries

2006). Interestingly, BP86-optimized geometries GANT61 ic50 were better than those obtained from B3LYP; however, B3LYP yielded exchange coupling constants in excellent

agreement with experiment. The coupled perturbed Kohn–Sham equations were employed for the g-tensor calculations, and a strategy for the computation of g-tensor site values was presented that provided single-site g-tensors in good agreement with the expectations for the respective Mn formal oxidation states. Spin projection gave the g-tensor of the coupled manganese complex in good agreement with the experimental results. Small values were found for the nuclear quadrupole splitting of 55Mn. Hyperfine tensors were furthermore calculated and spin-projected. 14N and 1H ligand hyperfine data were found to compare well with experiment. 55Mn HFCs were qualitatively in line with experimental Bucladesine concentration results, tracing the source of anisotropy to the MnIII center. However, isotropic 55Mn HFCs were distinctly underestimated. The authors indicated that this deficiency is systematic in character and does not originate from the broken symmetry approach. Similar deviations were found between theory and experiment for DFT calculations on mononuclear Mn complexes, suggesting that the use of a universal scaling factor of approximately 1.5 might be appropriate.

Summary and perspectives Density functional theory methods have already been established as a valuable research tool both in independent applications and as a complement of experimental Selleckchem GM6001 investigations. In favorable cases, the calculated properties are sufficiently accurate to discriminate between structural alternatives for reaction intermediates or other species that are not amenable to experimental structure elucidation. DFT appears generally reliable for geometries, vibrational frequencies, and total energies, having over wavefunction-based methods the

advantage of quick convergence to the basis set limit. DFT appears to be quite successful for the prediction of molecular properties as well, since a number of spectroscopic properties of interest to the bioinorganic community can be predicted with good accuracy. Hybrid functionals are in most cases better performers, with the TPSSh functional emerging as a potential new standard. There are still cases, however, where quantitative accuracy may be difficult to achieve, especially Adenosine triphosphate for the prediction of EPR parameters or optical spectra, necessitating a cautious and critical approach from the part of the researcher. It is important for both practitioners of DFT and the nontechnical audience of DFT studies to keep in mind that errors do arise and they can be significant. Despite the enormous advances in density functional implementations and the sufficiently documented accuracy of results for many applications, there is no systematic way of improving DFT or converging its results to the “correct” answer, in contrast to some of the traditional wavefunction-based methods.

Comments are closed.