Phys Rev B 1998, 58:11085. 10.1103/PhysRevB.58.11085CrossRef 21. Hale LM, Zhou X, Zimmerman JA, Moody NR, Ballarini R, Gerberich WW: Phase transformations, dislocations and hardening behavior in uniaxially compressed silicon nanospheres. Comput Mater Sci 2011, 50:1651–1660. 10.1016/j.commatsci.2010.12.023CrossRef
22. Nosé S: A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 1984, 81:511–519. 10.1063/1.447334CrossRef 23. Hoover WG: Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 1985, 31:1695–1697. 10.1103/PhysRevA.31.1695CrossRef 24. Tsuzuki H, Branicio PS, Rino JP: Structural characterization of deformed crystals by analysis of common atomic neighborhood. Comput Phys Commun 2007, 177:518–523. 10.1016/j.cpc.2007.05.018CrossRef 25. Lian J, Wang J, Kim Y, Greer J: Sample boundary effect in nanoindentation PF-02341066 price of nano and microscale surface structures. J Mech Phys Solid 2009, 57:812–827. 10.1016/j.jmps.2009.01.008CrossRef 26. Johnson KL: Contact Mechanics. Cambridge: Cambridge University
Press; 1985.CrossRef 27. Zhu T, Li J, Van Vliet KJ, Ogata S, Yip S, Suresh S: Predictive modeling of nanoindentation-induced homogeneous dislocation nucleation in copper. J Mech Phys Solid 2004, 52:691–724. 10.1016/j.jmps.2003.07.006CrossRef 28. Marchenko A, Zhang H: Effects of location of twin boundaries and grain size on plastic deformation of nanocrystalline copper. EX 527 molecular weight Metall Mater Trans A 2012, new 43:3547–3555. 10.1007/s11661-012-1208-3CrossRef 29. You Z, Li X, Gui L, Lu Q, Zhu T, Gao H, Lu L: Plastic anisotropy and associated deformation mechanisms in nanotwinned metals. Acta Mater 2013, 61:217–227. 10.1016/j.actamat.2012.09.052CrossRef 30. Zhu T, Gao H: Plastic deformation mechanism in nanotwinned metals: an insight form molecular dynamics and mechanistic modeling. Scripta Mater 2012, 66:843–848. 10.1016/j.scriptamat.2012.01.031CrossRef 31. Wu ZX, Zhang YW, Srolovitz DJ: Deformation mechanisms, length scales
and optimizing the mechanical properties of nanotwinned metals. Acta Mater 2011, 59:6890–6900. 10.1016/j.actamat.2011.07.038CrossRef 32. Mishin Y, Mehl MJ, Papaconstantopoulos DA, Voter AF, Kress JD: Structural stability and lattice defects in copper: ab initio, tight-binding, and embedded-atom calculations. Phys Rev B 2001, 63:224106.CrossRef Competing interests The authors declare that they have no competing interests. Authors’ contributions JB conducted the MD simulations. GW designed the project. JB and GW drafted the manuscript. XN and HZ revised the paper. All authors read and approved the final manuscript.”
“Background In recent years, the concept of advanced heterogeneous integration on silicon (Si) platform has attracted much attention towards the realization of a ‘More than Moore’ technology [1]. To realize such technology, the growth of high-quality elements (i.e., germanium (Ge) [2]) compound semiconductors (i.e.