Finally, we summarize the results in ‘Conclusions’ Section Metho

Finally, we summarize the results in ‘Conclusions’ Section. Methods As depicted in Figure 1, the MD model of single asperity friction employed in the present work consists of a

substrate and a spherical probe. The substrate of single crystalline copper has a dimension of 30, 10, and 30 nm in X[2], Y [111], and Z[1–10] directions, respectively. Periodic boundary conditions are imposed in the transverse X and Z directions of the substrate. Figure 1 shows that the substrate is composed of two virtual types of atoms, as the green color stands for the fixed atoms and the red one represents the mobile atoms in which motions follow the Newton’s second law of motion. The atomic interactions within the substrate Pexidartinib ic50 are described by an embedded atom method developed for copper [21]. The frictionless spherical probe is modeled by a strong repulsive potential [22]. To study the influence of probe radius on the friction, four probe radiuses of 6, 8, 10, and 12 nm are considered. Figure 1 MD model of single asperity friction of single crystalline copper. The atoms Pembrolizumab price in the substrate are colored according to their virtual types, as red for mobile atoms and green for fixed atoms. The atoms in the as-created substrate first undergo global energy minimization at 0 K, and then the substrate

is relaxed to its equilibrium configuration at 30 K and 0 bar through dynamic NPT relaxation for 50 ps. After relaxation, the substrate is subjected to friction by placing the probe above the free surface of the substrate with a distance of 0.2 nm. The friction process is composed of two stages of first penetration and following scratching, as illustrated

in Figure 1. In the penetration stage, the probe moves along negative Y direction with constant velocity of 20 m/s to penetrate into the substrate until a pre-determined penetration depth is reached. In the following scratching stage, the probe scratches at 12.2 nm along negative X direction with constant velocity of 20 m/s. Both the penetration and scratching velocities of 20 Depsipeptide nmr m/s are a few orders of magnitude higher than the typical velocities utilized in nanoscratching experiments due to the intrinsic requirement of integration timesteps to be of the order of 1 fs. All the MD simulations are completed using the IMD code with a time step of 1 fs [23]. The detailed description about the friction procedure can also be found elsewhere [24]. To identify the defects generated within the substrate, a modified bond angle distribution (BAD) method is utilized [25]. In the present work, the perfect face-centered cubic (FCC) atoms are not shown for better viewing of the defect structures, and the coloring scheme for various defects is as follows: red stands for surface atoms, blue indicates hexagonal close-packed (HCP) atoms, and the remaining atoms are categorized into defects including dislocation cores and vacancies.

g , Sellers et al 1997; Hubbard et al 2001; Tardieu 2003; Buckl

g., Sellers et al. 1997; Hubbard et al. 2001; Tardieu 2003; Buckley 2005). Even mild water deficits, when relative water content remains above 70%, primarily cause limitation to carbon dioxide uptake because of stomatal closure. With greater water deficits, direct inhibition BGB324 ic50 of photosynthesis occurs (Gupta and Berkowitz 1988; Smirnoff 1993). Phloem is responsible for the transport of photosynthates such as

sucrose from leaves to the rest of the plant. If unloading is inhibited photosynthesis will be decreased. Therefore, there is a strong interrelationship between photosynthesis activity/CO2 assimilation, plant water status, and xylem and phloem transport/hydraulic conductance (Daudet et al. 2002). Although these principles are now well known, the dynamics of the interrelationship and integration between these processes on plant level is still lacking. What we need is to be able to measure in intact plants phloem and xylem flow in relation to water content in the surrounding tissues (the storage pools), under normal

and under water limiting or even stress conditions see more (e.g., drought or as a function of phloem loading/unloading mechanisms due to e.g., anoxia), in relation to photosynthesis activity. MRI methods and dedicated hardware have been presented to measure xylem and phloem water transport in relation to water content in different storage tissues (bark, cambial zone, xylem, and parenchyma) non-invasively in the stem of intact plants

(Van As 2007; Van As and Windt 2008). In addition, portable NMR (non-spatially resolved) is becoming available for RVX-208 water content measurements in leaves (Capitani et al. 2009). These NMR and MRI methods can be combined with measurements of photosynthesis activity, e.g., monitoring by PAM techniques. In this review, we introduce these NMR and MRI methods and discuss them in relation to spatial and temporal resolution and (sub)cellular water content. Imaging principles and partial volume effects In a homogeneous main magnetic field B 0, equal spins (e.g., protons of the water molecules) have identical Larmor precession frequency, and a single resonance line in the frequency spectrum is observed at $$ \nu_0 = (\gamma/2\pi )B_0 $$ (1) γ is the gyromagnetic ratio that is a characteristic property for each type of spin bearing nuclei. For mobile (liquid) molecules the resonance line is Lorenzian shaped with a width at half maximum inversely proportional to the T 2, the spin–spin or transverse relaxation time.

It is to be expected that other still unknown factors are require

It is to be expected that other still unknown factors are required for K. pneumoniae to colonize and reside in the GI tract. An increased knowledge of such factors is an important step in the search for new strategies to prevent colonisation and subsequent infection of susceptible patients with K. pneumoniae. One approach to identify novel pathogenic virulence mechanisms is to employ screening of genomic libraries. Such libraries are constructed by digesting genomic DNA, cloning it into vectors

and transforming them into cells that can be screened for a desired phenotype [16–19]. In a previous study, we constructed a library of K. pneumoniae DNA expressed in Escherichia coli and successfully AZD8055 nmr used it Romidepsin cell line to screen for K. pneumoniae genes involved in biofilm formation in vitro[18]. The objective of this study was to identify genes involved in K. pneumoniae intestinal colonisation by screening of the K. pneumoniae genomic library in a well-established

mouse model of GI colonisation. To our knowledge, this is the first use of a genomic library as a positive-selection-based in vivo screening model. We demonstrate successful in vivo selection of clones containing GI colonisation promoting K. pneumoniae genes, thus validating this novel screening approach. Results Clones containing colonisation promoting genes are selected in the mouse GI colonisation model We initially assessed the colonisation abilities of K. pneumoniae clinical isolate C3091 and E. coli laboratory strain EPI100 in the mouse model of GI colonisation. We found that while both strains persistently colonized the intestines of the infected mice, the bacterial counts in faeces were more than 100-fold

higher for C3091 than for EPI100 (Figure 1). Thus K. pneumoniae C3091 is a superior coloniser of the intestinal tract likely via possession of genes not present in the E. coli strain and which promote enhanced colonisation ability. Figure 1 Colonisation of the intestine by K. pneumoniae C3091 and E. coli EPI100. The two Methamphetamine strains were fed individually to sets of three mice. Colonisation was quantified from plating of faeces on selective media. Symbols for day 0 represent the size of inoculum. The results are presented as the mean log (CFU/g faeces) ± sum of means (SEM). To identify GI colonisation promoting genes, a library consisting of 1,152 fosmids, each containing approximately 40 kb random K. pneumoniae C3091 DNA, expressed in E. coli EPI100 was screened in the mouse GI colonisation model. The library was arrayed in 12 pools each containing 96 fosmid clones. The 12 pools were fed individually to a set of two mice, and following 17 days of colonisation, fosmids were purified from colonies picked from platings of faecal samples and characterised. The 17-day colonisation period was chosen to ensure enough time for detectable selection of clones containing colonisation promoting genes.

Microbiology 1996, 142:2145–2151 PubMedCrossRef 33 Stepanovic S,

Microbiology 1996, 142:2145–2151.PubMedCrossRef 33. Stepanovic S, Vucovic D, Dakic I, Savic B, Svabic-Vlahovic M: A modified microtiter-plate test for quantification Palbociclib solubility dmso of staphylococcal biofilm formation. J Microbiol Methods 2000, 40:175–179.PubMedCrossRef 34. Ternan NG, McGrath

JW, Quinn JP: Phosphoenolpyruvate phosphomutase activity in an L-phosphonoalanine mineralising strain of Burkholderia cepacia. Appl Environ Microbiol 1998, 64:2291–2294.PubMed 35. Stoodley P, Sauer K, Davies DG, Costerton JW: Biofilms as complex differentiated communities. Annu Rev Microbiol 2002, 56:187–209.PubMedCrossRef 36. Suci PA, Mittelman MW, Yu FP, Geesey GG: Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 1994, 38:2125–2133.PubMed 37. O’Toole G, Kaplan HB, Kolter R: Biofilm formation as microbial development. Annu Rev Microbiol 2000, 54:49–79.PubMedCrossRef 38. Shrout JD, Chopp DL, Just CL, Hentzer M, Givskov M, Parsek MR: The impact of quorum sensing and swarming motility

on Pseudomonas aeruginosa biofilm formation is nutritional conditional. Mol Microbiol 2006, 62:1264–1277.PubMedCrossRef 39. Simpson DA, Ramphal R, Lory S: Characterisation of Pseudomonas aeruginosa fliO , a gene involved in flagellar biosynthesis and adherence. Infect Immun 1995, 63:2950–2957.PubMed 40. Head NE, Yu H: Cross-sectional analysis of clinical and environmental CB-839 isolates of Pseudomonas aeruginosa : biofilm formation, virulence, and genome diversity. Infect Immun 2004, 72:133–144.PubMedCrossRef 41. Murray TS, Kazmierczak BI: Pseudomonas aeruginosa exhibits sliding motility in the absence of Type IV Pili and flagella. J Bacteriol

2008, 190:2700–2708.PubMedCrossRef 42. Kim TJ, Young BM, Young GM: Effect of flagellar mutations on Yersinia enterocolitica biofilm formation. Appl Environ Microbiol 2008, 74:5466–5474.PubMedCrossRef 43. Heilmann C, Thumm G, Chhatwal GS, Hartleib J, Uekotter A, oxyclozanide Peters G: Identification and characterization of a novel autolysin (Aae) with adhesive properties from Staphylococcus epidermidis . Microbiology 2003, 149:2769–2778.PubMedCrossRef 44. Klausen M, Aes-Jørgensen A, Mølin S, Tolker-Nielsen T: Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 2003, 50:61–68.PubMedCrossRef 45. Barken KB, Pamp SJ, Yang L, Gjermansen M, Bertrand JJ, Klausen M, Givskov M, Whitchurch CB, Engel JN, Tolker-Nielsen T: Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. Environ Microbiol 2008, 10:2331–2243.PubMedCrossRef 46. Vazquez-Juarez RC, Kuriakose JA, Rasko DA, Ritchie JM, Kendall MM, Slater TM, Sinha M, Luxon BA, Popov VL, Waldor MK, Sperandio V, Torres AG: Escherichia coli O 157:H7 adherence and intestinal colonization. Infect Immun. 2008, 76:5072–5081. 47.

Phalakornkul JK, Gast AP, Pecora R: Rotational and translational

Phalakornkul JK, Gast AP, Pecora R: Rotational and translational dynamics of rodlike polymers: a combined transient electric birefringence and dynamic light scattering study. Macromolecules 1999, 32:3122–3135.CrossRef 86. Farrell D, Dennis CL, Lim JK, Majetich SA: Optical and electron microscopy studies of Schiller layer formation and structure. J Colloid Interface Sci 2009, 331:394–400.CrossRef

87. Fang XL, Li Y, Chen C, Kuang Q, Gao XZ, Xie ZX, Xie SY, Huang RB, Zheng LS: pH-induced this website simultaneous synthesis and self-assembly of 3D layered β-FeOOH nanorods. Langmuir 2010, 26:2745–2750.CrossRef Competing interests The authors declare that they have no competing interests. Authors’ contributions JKL synthesized the MNPs, carried out TEM analysis, and drafted the manuscript. SPY carried out DLS measurement and data analysis. HXC carried out DLS measurement

and data analysis. SCL participated in the design of the study and drafted the manuscript. All authors read and approved the final manuscript.”
“Background Resistive random access memory (RRAM) with a simple metal-insulator-metal structure shows promising characteristics in terms of scalability, low power operation, and multilevel data storage capability and is suitable for next-generation memory applications [1–4]. RRAM devices with simple structure and easy fabrication process that are compatible with high-density 3D integration [5] will be needed in the future. selleck inhibitor Various oxide switching materials such as HfOx[6–9], TaOx[3, 10–15], AlOx[16–19], GdOx[20], TiOx[21–23], NiOx[24, 25], ZrOx[26–29], ZnO [30–32], SiOx[33], and GeOx[34–36] have been used in nanoscale RRAM applications. However, their nonuniform switching and poorly understood switching mechanisms are currently the bottlenecks for the design of nanoscale resistive switching memory. Generally, inert metal electrodes [4] and various interfacial methods are used to improve resistive switching memory characteristics. We previously reported polarity-dependent improved memory characteristics using

IrOx nanodots (NDs) in an IrOx/AlOx/IrOx-NDs/AlOx/W structure [16]. However, improved memory performance using different high-κ oxide switching materials such as AlOx, GdOx, HfOx, and TaOx in IrOx/high-κx/W structures has not been reported yet. Using different high-κ oxides in the same structure may reveal a unique way to design novel RRAM crotamiton devices for practical applications. Electrical formation of an interfacial layer at the IrOx/high-κx interface is important to improve resistive switching memory characteristics. Using this approach, high-density memory could be achieved using an IrOx/AlOx/W cross-point structure, which we also report here. In this study, we show that the electrically formed oxygen-rich interfacial layer at the IrOx/high-κx interface in an IrOx/high-κx/W structure plays an important role in improving the resistive switching memory characteristics of the structure.

Phys Rev B 1998, 58:11085 10 1103/PhysRevB 58 11085CrossRef 21

Phys Rev B 1998, 58:11085. 10.1103/PhysRevB.58.11085CrossRef 21. Hale LM, Zhou X, Zimmerman JA, Moody NR, Ballarini R, Gerberich WW: Phase transformations, dislocations and hardening behavior in uniaxially compressed silicon nanospheres. Comput Mater Sci 2011, 50:1651–1660. 10.1016/j.commatsci.2010.12.023CrossRef

22. Nosé S: A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 1984, 81:511–519. 10.1063/1.447334CrossRef 23. Hoover WG: Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 1985, 31:1695–1697. 10.1103/PhysRevA.31.1695CrossRef 24. Tsuzuki H, Branicio PS, Rino JP: Structural characterization of deformed crystals by analysis of common atomic neighborhood. Comput Phys Commun 2007, 177:518–523. 10.1016/j.cpc.2007.05.018CrossRef 25. Lian J, Wang J, Kim Y, Greer J: Sample boundary effect in nanoindentation PF-02341066 price of nano and microscale surface structures. J Mech Phys Solid 2009, 57:812–827. 10.1016/j.jmps.2009.01.008CrossRef 26. Johnson KL: Contact Mechanics. Cambridge: Cambridge University

Press; 1985.CrossRef 27. Zhu T, Li J, Van Vliet KJ, Ogata S, Yip S, Suresh S: Predictive modeling of nanoindentation-induced homogeneous dislocation nucleation in copper. J Mech Phys Solid 2004, 52:691–724. 10.1016/j.jmps.2003.07.006CrossRef 28. Marchenko A, Zhang H: Effects of location of twin boundaries and grain size on plastic deformation of nanocrystalline copper. EX 527 molecular weight Metall Mater Trans A 2012, new 43:3547–3555. 10.1007/s11661-012-1208-3CrossRef 29. You Z, Li X, Gui L, Lu Q, Zhu T, Gao H, Lu L: Plastic anisotropy and associated deformation mechanisms in nanotwinned metals. Acta Mater 2013, 61:217–227. 10.1016/j.actamat.2012.09.052CrossRef 30. Zhu T, Gao H: Plastic deformation mechanism in nanotwinned metals: an insight form molecular dynamics and mechanistic modeling. Scripta Mater 2012, 66:843–848. 10.1016/j.scriptamat.2012.01.031CrossRef 31. Wu ZX, Zhang YW, Srolovitz DJ: Deformation mechanisms, length scales

and optimizing the mechanical properties of nanotwinned metals. Acta Mater 2011, 59:6890–6900. 10.1016/j.actamat.2011.07.038CrossRef 32. Mishin Y, Mehl MJ, Papaconstantopoulos DA, Voter AF, Kress JD: Structural stability and lattice defects in copper: ab initio, tight-binding, and embedded-atom calculations. Phys Rev B 2001, 63:224106.CrossRef Competing interests The authors declare that they have no competing interests. Authors’ contributions JB conducted the MD simulations. GW designed the project. JB and GW drafted the manuscript. XN and HZ revised the paper. All authors read and approved the final manuscript.”
“Background In recent years, the concept of advanced heterogeneous integration on silicon (Si) platform has attracted much attention towards the realization of a ‘More than Moore’ technology [1]. To realize such technology, the growth of high-quality elements (i.e., germanium (Ge) [2]) compound semiconductors (i.e.

In this light, we urge the CITES Management Authorities from Thai

In this light, we urge the CITES Management Authorities from Thailand LEE011 and Kazakhstan to scrutinize the trade involving captive-bred specimens of Dendrobatidae. We furthermore recommend the CITES

Management Authorities of the range States (Colombia, Peru, Suriname, Brazil amongst others) to follow up on this issue with the Management Authorities in Thailand and Kazakhstan. While the described trade in CITES II-listed poison arrow frogs in Asia may be exceptional, discrepancies in reported levels of international wildlife trade are not (e.g. Blundell and Mascia 2005) and we urge conservationists and others interested in regulating wildlife trade to explore other similar cases, retrospectively or in real time, and report discrepancies to the relevant authorities. Acknowledgments We thank Steve Gorzula and Matthew Todd for information on the poison arrow trade, and Claire

Beastall for preparing the map. We thank Watana Vetayaprasit, Director of the CITES Management Authority of Thailand for providing information on the import of CITES-listed amphibians into Thailand. Victor J.T. Loehr, Maylynn Engler and two anonymous reviewers are thanked for constructive comments. Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. References Bartlett selleck chemical RD (2003) Poison dart frogs: facts and advice on care and breeding. Barron’s Educational Series, Hauppauge Blundell AG, Mascia MB (2005) Discrepancies in reported levels of international wildlife trade. Conserv Biol 19:2020–2025CrossRef

Brown JL, Schulte R, Summers K (2006) A new species of Dendrobates (Anura: Dendrobatidae) from the Amazonian lowlands of Peru. Zootaxa 1152:45–58 CITES (2009) CITES glossary. http://​www.​cites.​org/​eng/​resources/​terms/​glossary.​shtml#c. Accessed 15 Nov 2009 Clough M, Summers K (2000) Phylogenetic systematics and biogeography of the poison frogs: evidence from mitochondrial DNA sequences. Oxymatrine Biol J Linn Soc 70:515–540 Daszak P, Cunningham AA, Hyatt AD (2003) Infectious disease and amphibian population declines. Divers Distrib 9:141–150 Duarte-Quiroga A, Estrada A (2003) Primates as pets in Mexico city: an assessment of the species involved, source of origin, and general aspects of treatment. Am J Primatol 61:53–60PubMed Frost DR (2004) Amphibian species of the world: a taxonomic and geographic reference. http://​research.​amnh.​org/​herpetology/​amphibia/​index.​php. Accessed 15 Nov 2009 Gorzula S (1996) The trade in dendrobatid frogs from 1987 to 1993.

J Gen Microbiol 1987, 133:1127–1135 PubMed 40 Loc Carrillo C, At

J Gen Microbiol 1987, 133:1127–1135.PubMed 40. Loc Carrillo C, Atterbury RJ, El-Shibiny A, Connerton PL, Dillon E, Scott A, Connerton IF: Bacteriophage therapy to reduce Campylobacter

jejuni colonization of broiler chickens. Appl Environ Microbiol 2005, 71:6554–6563.PubMedCrossRef 41. Wagenaar JA, Van Bergen MA, Mueller MA, Wassenaar TM, Carlton RM: Phage therapy reduces Campylobacter jejuni colonization in broilers. Vet Microbiol 2005, 109:275–283.PubMedCrossRef 42. Li X, Swaggerty CL, Kogut MH, Chiang H, Wang Y, Genovese KJ, Belnacasan He H, Stern NJ, Pevzner IY, Zhou H: The Paternal Effect of Campylobacter jejuni Colonization in Ceca in Broilers. Poult Sci 2008, 87:1742–1747.PubMedCrossRef 43. Hansen VM, Rosenquist H, Baggesen DL, Brown S, Christensen BB: Characterization of Campylobacter phages including analysis of host range by selected Campylobacter Penner serotypes. BMC Microbiol 2007, 7:90.PubMedCrossRef 44. Sails AD, Wareing DR, Bolton FJ, Fox AJ, Curry A: Characterisation of 16 Campylobacter buy Tanespimycin jejuni and C.coli typing bacteriophages. J Med Microbiol 1998, 47:123–128.PubMedCrossRef 45. Cairns BJ, Timms AR, Jansen VA, Connerton

IF, Payne RJ: Quantitative Models of In Vitro Bacteriophage Host Dynamics and Their Application to Phage Therapy. PLoS Pathog 2009, 5:e1000253.PubMedCrossRef 46. Sahin O, Zhang Q, Meitzler JC, Harr BS, Morishita TY, Mohan R: Prevalence, Antigenic Specificity, and Bactericidal Activity of Poultry Anti-Campylobacter Maternal Antibodies. Appl Environ Microbiol 2001, 67:3951–3957.PubMedCrossRef

47. Ma Y, Pacan JC, Wang Q, Xu Y, Huang X, Korenevsky A, Sabour PM: Microencapsulation of Bacteriophage Felix O1 into Chitosan-Alginate Microspheres for Oral Delivery. Appl Environ Microbiol 2008, 74:4799–4805.PubMedCrossRef 48. Rosenquist H, Nielsen NL, Sommer HM, Norrung B, Christensen BB: Quantitative risk assessment of human campylobacteriosis associated with thermophilic Campylobacter species in chickens. Int J Food Microbiol 2003, 83:87–103.PubMedCrossRef 49. Sambrook J, Russell DW: Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory Press; 2001. 50. Lingohr E, Frost S, Johnson RP: Determination of Bacteriophage Genome Size by Pulsed-Field Gel Electrophoresis. In Bacteriophages: Methods and Protocols, Volume 2 Molecular and Applied isothipendyl Aspects. Volume 502. Edited by: Clokie MRJ, Kropinski AM. Springer Protocols; 2008:19–25. Authors’ contributions CC and BG designed and planned the experiments, analyzed the data and wrote the manuscript. CC, BG, CH and DH performed the animal trials experiments. CC and SS performed the phage characterization experiments. CC, BG and SS made the statistical analysis of the data. JA and JR supervised and participated in the conception of the study, contributed with materials and reagents and revised the manuscript. All authors read and approved the final manuscript.

Garcia G, Buonsanti R, Runnerstrom EL, Mendelsberg RJ, Llordes A,

Garcia G, Buonsanti R, Runnerstrom EL, Mendelsberg RJ, Llordes A, Anders A, Richardson TJ, Milliron DJ: Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. Nano Lett 2011, 11:4415–4420.CrossRef 32. Chen Y, Kim M, Lian G, Johnson

MB, Peng X: Side reactions in controlling the quality, yield, CDK inhibitor and stability of high quality colloidal nanocrystals. J Am Chem Soc 2005, 127:13331–13337.CrossRef 33. Narayanaswamy A, Xu H, Pradhan N, Kim M, Peng X: Formation of nearly monodisperse In 2 O 3 nanodots and oriented-attached nanoflowers: hydrolysis and alcoholysis vs pyrolysis. J Am Chem Soc 2006, 128:10310–10319.CrossRef 34. Chen Y, Johnson E, Peng X: Formation of monodisperse and shape-controlled MnO nanocrystals in non-injection synthesis: self-focusing via ripening. J Am Chem Soc 2007, 129:10937–10947.CrossRef 35. Stuart BH: Infrared Spectroscopy: Fundamentals and Applications. Hoboken: Wiley; 2004.CrossRef 36. Carey FA: Organic Chemistry. New York: McGraw-Hill; 2000. 37. Xie R, Li Z, Peng X: Nucleation kinetics vs chemical kinetics in the initial formation of semiconductor nanocrystals.

J Am Chem Soc 2009, 131:15457–15466.CrossRef 38. Ludi B, Süess MJ, Werner IA, Niederberger M: Mechanistic aspects of molecular formation and crystallization of zinc oxide nanoparticles find more in benzyl alcohol. Nanoscale 2012, 4:1982–1995.CrossRef 39. Koziej D, Rossell MD, Ludi B, Hintennach A, Novak P, Grunwaldt JD, Niederberger M: Interplay between size and crystal structure of molybdenum dioxide nanoparticles–synthesis, growth mechanism, and electrochemical

performance. Small 2011, 7:377–387.CrossRef 40. Alam MJ, Cameron DC: Optical and electrical properties of transparent conductive ITO thin films deposited by sol–gel process. Thin Solid Films 2000, 377–378:455–459.CrossRef 41. Teixeira V, Cui HN, Meng LJ, Fortunato E, Martins R: Amorphous ITO thin films prepared by DC sputtering for electrochromic applications. Thin Solid Films 2002, 420–421:70–75.CrossRef Competing interests The authors declare that they have no competing interests. Authors’ contributions YZJ designed Resveratrol the experiments and wrote the paper. QY preformed most experiments and drafted the figures. YPR and XW carried out some experimental work. ZZY provided a few valuable suggestions. All authors read and approved the final manuscript.”
“Background Recently, flexible electronics has attracted increasing attention, including batteries, displays [1], conformal antenna arrays [2], radio-frequency identification tags [3], electronic circuits fabricated in clothing [4], and biomedical devices [5], with new characteristics like large area, nonplanar forms, low manufacturing cost, disposable and wearable style, environmentally sustainable production methods, recycling, lightweight, lower energy consumption, and the integration of electronics as a part of other structures [6–10].

Anal Chem 2008, 80:4651–4658 CrossRef 29 Fologea D, Ledden B, Mc

Anal Chem 2008, 80:4651–4658.CrossRef 29. Fologea D, Ledden B, McNabb DS, Li J: Electrical characterization of protein molecules by a solid-state nanopore. Appl Phys Lett 2007, 91:539011.CrossRef 30. Hyun C, Kaur H, Rollings R, Xiao M, Li J: Threading immobilized DNA molecules through a Akt inhibitor solid-state nanopore at >100 μs per base rate. ACS Nano 2013, 7:5892–5900.CrossRef 31. Niedzwiecki DJ, Grazul J, Movileanu L: Single-molecule

observation of protein adsorption onto an inorganic surface. J Am Chem Soc 2010, 132:10816–10822.CrossRef 32. Sexton LT, Mukaibo H, Katira P, Hess H, Sherrill SA, Horne LP, Martin CR: An adsorption-based model for pulse duration in resistive-pulse protein sensing. J Am Chem Soc 2010, 132:6755–6763.CrossRef 33. Tsutsui M, He Y, Furuhashi M, Rahong S, Taniguchi M, Kawai T: Transverse electric field dragging of DNA in a nanochannel. Sci Rep 2012, 2:394. 34. Yeh LH, Fang KY, Hsu JP, Tseng S: Influence of boundary

on the effect of double-layer polarization and the electrophoretic behavior of soft biocolloids. Colloids Surf B: Biointerfaces 2011, 88:559–567.CrossRef 35. Wanunu M, Morrison W, Rabin Y, Grosberg AY, Meller A: Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nat Nanotechnol 2010, 5:160–165.CrossRef Ensartinib manufacturer 36. Jiang DE, Jin Z, Wu J: Oscillation of capacitance inside nanopores. Nano Lett 2011, 11:5373–5377.CrossRef 37. Luan B, Stolovitzky G: An electro-hydrodynamics-based model for the ionic conductivity of solid-state nanopores during DNA translocation. Nanotechnology 2013, 24:195702.CrossRef Amobarbital 38. Kocer A, Tauk L, Dejardin P: Nanopore sensors: from hybrid to abiotic systems. Biosens Bioelectron 2012, 38:1–10.CrossRef 39. Liu L, Zhu LZ, Ni ZH, Chen YF: Detecting a single molecule using a micropore-nanopore hybrid chip. Nanoscale Res Lett 2013, 8:498.CrossRef 40. Liu Q, Wu H, Wu L, Xie X, Kong J, Ye X, Liu L: Voltage-driven translocation of DNA through

a high throughput conical solid-state nanopore. PLoS One 2012, 7:e46014.CrossRef 41. Hall AR, van Dorp S, Lemay SG, Dekker C: Electrophoretic force on a protein-coated DNA molecule in a solid-state nanopore. Nano Lett 2009, 9:4441–4445.CrossRef 42. Yusko EC, Johnson JM, Majd S, Prangkio P, Rollings RC, Li J, Yang J, Mayer M: Controlling protein translocation through nanopores with bio-inspired fluid walls. Nat Nanotechnol 2011, 6:253–260.CrossRef 43. Yeh LH, Zhang M, Qian S: Ion transport in a pH-regulated nanopore. Anal Chem 2013, 85:7527–7534.CrossRef 44. Gershow M, Golovchenko JA: Recapturing and trapping single molecules with a solid-state nanopore. Nat Nanotechnol 2007, 2:775–779.CrossRef 45. Smeets RMM, Keyser UF, Dekker NH, Dekker C: Noise in solid-state nanopores. PNAS 2008, 105:417–421.CrossRef 46.