Furthermore, NO-endproducts quantification supports the ability of Trebouxia photobionts to produce NO, eventually in important amounts (Table 1). Chlorophyll autofluorescence informs about the levels and integrity of this molecule. No appreciable changes
in chlorophyll autofluorescence were seen this website during rehydration but the inhibition of NO in thalli hydrated for 24 h induced a reversible decrease in this parameter during 1 h. NO has been shown to ameliorate ROS toxicity in the chlorophycean alga Scenedesmus obliquus, probably by preventing the photo-inhibition that leads to photo-oxidation and pigment bleaching [39]. Our studies on the physiology of photosynthesis show that the inhibition of NO action altered the photosynthetic activity of the photobionts. These results suggest 7-Cl-O-Nec1 nmr that NO is involved in PSII stabilization and could be related with the DZNeP supplier limited role of classical antioxidant systems during desiccation-rehydration cycles in Asterochloris (formerly Trebouxia) photobionts recently reported [7]. Several authors
have demonstrated that, in higher plants, NO reversibly binds to PSII [40–44] and modulates electron transfer and quenching processes [45]. The fact that the same dose of c-PTIO than that used for photobionts did not alter photosynthetic activity in the photobionts of intact lichens suggests that the mycobiont is involved in stabilizing the photobiont’s chlorophyll. Assays with higher doses of c-PTIO and specific inhibitors of fungal NO synthases are needed to confirm this possibility.
Conclusions These data provide the first evidence of an important role for NO in oxidative stress regulation during the early stages of rehydration in the lichen Ramalina farinacea, including chlorophyll photostability of the trebouxioid photobionts (summarized in Figure 8). Our results also raise important questions about the evolutionary role of NO in the establishment of lichen symbiosis, due to its dual role as antioxidant Niclosamide and mediator in cell communication. Figure 8 Schematic representation of the findings of the present work on the functional relation of nitric oxide (NO) with oxidative stress during rehydration of Ramalina farinacea in the context of current knowledge. Rehydration induces the functional reconstitution of electron chains, the most relevant being chloroplast photosynthesis and mitochondrial oxidative phosphorilation. During the process of reconstitution, membrane molecular architecture is not optimal and an elevated electron leaking from electron chains occurs. Electron leaking causes a burst of intracellular ROS. Nitric oxide is released mainly from mycobiont medular hyphae (NO production by photobionts has not been confirmed in the lichen but is likely). A decrease in lipid peroxidation of lichen thalli coincides with the peak of NO-endproductos.