After being annealed on a hot plate at 150°C for 10

After being annealed on a hot plate at 150°C for 10 Selleck CHIR99021 min in order to remove moisture, the samples were spin-coated by a mixed solution of P3HT:PCBM with concentrations of 15 and 12 mg⋅ml-1 in dichlorobenzene at 2,000 r/m for 40 s. Then, the samples were annealed on a hot plate at 150°C for 20 min to remove dichlorobenzene. The whole process was completed in a nitrogen glove box. Finally, Al thin films with a thickness of 150 nm as the cathodes were deposited onto the above layers by magnetron sputtering method through a shadow mask, resulting in active device areas of 7 mm2. The completed photovoltaic structure of ITO/PEDOT:PSS/P3HT:PCBM/Al was annealed

at 150°C for 30 min in the nitrogen glove box. The preparation process of the

CIGS-based {Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|buy Anti-infection Compound Library|Anti-infection Compound Library ic50|Anti-infection Compound Library price|Anti-infection Compound Library cost|Anti-infection Compound Library solubility dmso|Anti-infection Compound Library purchase|Anti-infection Compound Library manufacturer|Anti-infection Compound Library research buy|Anti-infection Compound Library order|Anti-infection Compound Library mouse|Anti-infection Compound Library chemical structure|Anti-infection Compound Library mw|Anti-infection Compound Library molecular weight|Anti-infection Compound Library datasheet|Anti-infection Compound Library supplier|Anti-infection Compound Library in vitro|Anti-infection Compound Library cell line|Anti-infection Compound Library concentration|Anti-infection Compound Library nmr|Anti-infection Compound Library in vivo|Anti-infection Compound Library clinical trial|Anti-infection Compound Library cell assay|Anti-infection Compound Library screening|Anti-infection Compound Library high throughput|buy Antiinfection Compound Library|Antiinfection Compound Library ic50|Antiinfection Compound Library price|Antiinfection Compound Library cost|Antiinfection Compound Library solubility dmso|Antiinfection Compound Library purchase|Antiinfection Compound Library manufacturer|Antiinfection Compound Library research buy|Antiinfection Compound Library order|Antiinfection Compound Library chemical structure|Antiinfection Compound Library datasheet|Antiinfection Compound Library supplier|Antiinfection Compound Library in vitro|Antiinfection Compound Library cell line|Antiinfection Compound Library concentration|Antiinfection Compound Library clinical trial|Antiinfection Compound Library cell assay|Antiinfection Compound Library screening|Antiinfection Compound Library high throughput|Anti-infection Compound high throughput screening| polymer solar cells with the structure of ITO/CIGS/P3HT:PCBM/Al (shown in Figure 1a) was similar with that of the conventional polymer solar cell except that the ITO-glass substrates were covered by the layers of the CIGS nanoparticles deposited by PLD replacing the conventional PEDOT:PSS layers. The experimental setup of PLD consists of a Nd:YAG laser with a wavelength of 532 nm, a pulse duration of 5 ns, a deposition chamber with a rotating multi-target, and a base pressure of 1 × 10-6 Torr. The laser LBH589 beam was arranged to be incident at 45° on a target surface through a quartz window. The laser energy and repetition rate were 50 mJ and 10 Hz, respectively. The CIGS nanoparticles were deposited using a hot-pressed CuIn0.8Ga0.2Se2 target at a substrate temperature of 400°C for 3 min. Figure 1 Layout of a CIGS-based hybrid solar cell and its schematic energy level diagram. (a) Layout of the CIGS-based hybrid solar cell with the structure of ITO/CIGS/P3HT:PCBM/Al. (b) Schematic energy level diagram for the above structure (with energy levels in electron voltage relative to vacuum). The surface and cross-sectional morphology of the CIGS layers and CIGS/P3HT:PCBM bilayer was characterized by scanning electron microscopy (SEM) (XL30FEG, Philips, Amsterdam, Netherlands). The composition

of the CIGS nanoparticles was analyzed by energy dispersive spectroscopy (EDS) fitted on the SEM. The crystallinity of the CIGS layers was examined by X-ray diffraction (XRD) (D/MAX-IIA, Rigaku, Tokyo, Japan) using the Cu Kα radiation. The UV-vis absorption spectroscopy Fossariinae of the P3HT:PCBM blend monolayer and CIGS/P3HT:PCBM bilayer was detected by an ultraviolet-visible spectrophotometer (U-3000, Hitachi, Tokyo, Japan). The current density-voltage (J-V) characteristics of the unencapsulated samples were tested in air by using a Keithley 2400 SourceMeter (Cleveland, Ohio, USA) under air mass (AM) 1.5 global solar condition at 100 mW/cm2. The photoluminescence (PL) of the P3HT:PCBM blend monolayer and CIGS/P3HT:PCBM bilayer was measured at room temperature using a 325-nm He-Cd laser as the exciting light source.

Comments are closed.