Further CFTRinh-172 cost analysis demonstrates that there is a point in which the ratio of HCP to FCC phase is highest when the amount of NH3•3H2O is 600 μL which coincidently corresponds to morphology turning point. Before this point, the ratio of
HCP to FCC phase increases, and after that, the trend is contrary. Thus, the amount of HCP phase does not change linearly with the number of rods as displayed in Figure 1. Fast reaction is not very important for the appearance of HCP phase as noted in our previous report [15], but very essential for the growth of rod-like tips. In this paper, we demonstrate that reaction rate is the dominant factor influencing the ratio of HCP to FCC phase, namely, the abundance of HCP in silver nanostructures. However, another question arises what is the dominated factor for the abundance of HCP. Figure 3 The XRD spectra of different flower-like Ag nanostructures. The XRD spectra of different flower-like Ag nanostructures prepared with different stabilizing agents and different amounts of Idasanutlin manufacturer catalyzing agent NH3•3H2O. In the legend of the figure, ‘P’ stands for PVP, ‘SS’ stands for sodium sulfate, check details ‘SDS’ stands for sodium dodecyl sulfate, and the followed number stands for the amount of NH3•3H2O added. HCP Ag structures have a more favorable surface configuration but higher volume internal energy than FCC Ag. Common bulk silver
is well known as a FCC metal because FCC Ag has a lower internal energy when surface and interface effect can be neglected. However, when it comes to nanometer dimension, the surface energy may play a major role in determining the crystal structure and must be taken into consideration. Thus, the metastable HCP phase can have a more stable surface configuration at a certain shape and size range [17, 24, 25]. By using electrochemical deposition, HCP structural
silver nanowire is discovered to coexist Dichloromethane dehalogenase with FCC one and the highest concentration of HCP-Ag nanowire appears when the diameters are around 30 nm [17]. As for our preparation, with increasing the amount of catalyzing agent NH3•3H2O, the protruding rods become smaller in both longitudinal dimension and diameter as mentioned above. Smaller rods are occupied by larger surface areas, so HCP Ag structures become more favorable resulting in highest ratio of HCP to FCC phase when the amount of NH3•3H2O is 600 μL. Further increasing the amount of NH3•3H2O leads to numerous rods assembled in Ag clusters (Figure 1D), which may be the reason for the reduction of HCP percentage. Except the effect of the morphology, the growth mechanism/conditions as well play an important role in achieving the metastable high-energy crystal structures in nanometer-scale systems [18]. In our experiment, carboxyl group (-COOH) which is the oxidation product of aldehyde group may be beneficial for the formation of HCP phase [11, 15].