To Combretastatin A4 mouse compare
the effects of rFVIIa and PCC on anticoagulation reversal, Dickneite administered saline, 100 mcg/kg rFVIIa, or PCC 50 units/kg MK0683 purchase (Beriplex® P/N-a 4 factor PCC) in rats anticoagulated with either one dose of 2.5 mg/kg phenprocoumon (acute model) or two doses of phenprocoumon dosed 24 hours apart (sustained model). Anticoagulation was reversed 16 hours after the single dose model or 48 hours after the 2 dose model. Both rFVIIa and PCC4 were effective at lowering the PT compared to placebo. However, in the sustained model, PCC4 was significantly more effective at reducing blood loss compared to placebo and rFVIIa [25]. The author suggests the difference in the results are due to the low levels of other clotting factors, aside from factor VII, in rFVIIa compared to this PCC4 product. In the 9th edition of the American College of Chest Physicians Evidence
Based Clinical Practice Guidelines on the Pharmacology and Management of Vitamin K Antagonists released in February 2012, a specific recommendation was made to prefer four-factor PCC over FFP for rapid reversal of anticoagulation in VKA-associated major bleeding [10]. Due to limited evidence supporting rFVIIa, the guidelines also state that rFVIIa cannot be recommended unless other more effective agents are not available in the setting of life threatening bleeding [3]. The administration of coagulation factors is associated with thromboembolic events. In our study groups, the incidence of thromboembolic events was equal in both groups. Safaoui et al. reported no thromboembolic events in 28 patients receiving GSI-IX datasheet 2000 units of PCC3 (Konyne™ or Profilnine™) [26]. In a recent case report a dose of 50 units/kg of PCC for warfarin reversal was associated with fatal intracardiac thrombosis in a patient who had also received 24 micrograms of desmopressin for suspected uremic platelet PAK5 dysfunction and
fifty minutes later underwent pericardiocentesis [27]. There is more literature addressing the risk of thromboembolic events associated with rFVIIa. A recent publication evaluated 35 randomized clinical trials involving 4468 patients. A total of 498 thromboembolic events were reported (11.1%). Arterial thrombembolic events were higher in those that received rFVIIa (5.5% rFVIIa vs. 3.2% Placebo, p = 0.003), particularly coronary events (2.9% vs. 1.1%, p = 0.002). Venous thromboembolic events were not different between rFVIIa and placebo (5.3% rFVIIa vs. 5.7%. placebo) [28]. There were no arterial thromboembolic events in any of the patients in our study groups. There were several limitations to our study. This was a retrospective, observational study at a single center in which the choice of coagulation factor was at the discretion of the prescriber and INR monitoring was not conducted in accordance to any protocol. While the average time between the pre and post coagulation factor INR was similar in the two groups (3:53[2:32-7:17] PCC3 compared to 4:30[2:21-6:25] LDrFVIIa, p = 0.