Interestingly enough this insertion is absent from all other lineages and suggests a basal origin of the “third clade” with an internal fast evolution; it might SYN-117 have disappeared in some derived lineages such as Trametes suaveolens or Coriolopsis polyzona, the alternative hypothesis (a multiple origin
of this insertion) from an evolutionary point of view being less parsimonious. Fig. 2 Distribution and composition of insert in RPB2 sequences in the Trametes clade; species are disposed according to the ITS + RPB2 phylogeny in Fig. 1 28S rLSU analysis In order to obtain additional information, a 28S rLSU analysis was processed, independently from the former, by using sequences downloaded from GenBank (Fig. 3). A group of 41 reliable sequences of Trametes
and allied taxa (incl. 8 tropical species) was considered (Table 2). Most of them have been previously published by Tomšovský et al. (2006), whose species concepts match those adopted here. No rLSU sequence of Lenzites warnieri or T. cingulata is available in public databases. Laetiporus sulphureus, Trametella trogii and T. (Coriolopsis) gallica were used as outgroups (Tomšovský et al. 2006). Fig. 3 Phylogenetic reconstruction of the Trametes-group based on Bayesian analysis of rLSU (50% majority-rule JPH203 purchase consensus tree). Only the Pycnoporus/Leiotrametes clade including “Trametes” ljubarskyi shows a significant support compared to the ITS + RPB2 phylogeny (Fig. 1) This single-gene analysis using Bayesian methods gives a weak basal support, which does not contribute to
a better definition of the clades ABT-888 mw defined with ITS + RPB2. Nevertheless a good support (Bayesian PP = 0.94) is given to the “second clade” of the former analysis, including Pycnoporus and the Trametes lactinea-group. The displacement of Coriolopsis polyzona, Lenzites betulinus and Trametes Phospholipase D1 elegans e.g., compared to the former analysis, is not supported and cannot be considered as consistent. It is assumed that the 28S rLSU sequences are not pertinent for reconstructing the phylogeny of the Trametes-clade, although easily aligned. The necessity of choosing a very distant outgroup (Laetiporus sulphureus) in order to get a better ML bootstrapping suggests that the resolution power of rLSU is insufficient with the currently available data, as it is for the other gene studied by us (β-tubulin, data not shown). More taxa might partly improve this analysis. Discussion and new systematic arrangement of the Trametes-clade General systematics in the Trametes-group As expected, the close relationships between the genera Pycnoporus, Lenzites, Coriolopsis and Trametes, as previously described by Ko (2000), Garcia-Sandoval et al. (2011) and Rajchenberg (2011) were confirmed. Species such as Hexagonia nitida, Daedaleopsis tricolor, Trametella trogii with binucleate spores and heterocytic nuclear behavior, previously located in a sister clade position (Ko and Jung 1999; Tomšovský et al.