Kelch like-ECH-associated protein selleck kinase inhibitor 1 (Keap1) can sequester Nrf2 in the cytosol and help in maintaining redox balance [14]. These mechanisms to maintain redox homeostasis get hampered in neurodegenerative diseases. Nuclear level of Nrf2 is lowered in hippocampal neurons of Alzheimer’s disease patients [15]. In Parkinson’s disease (PD), though Nrf2 translocates to the nucleus, levels of ARE responsive genes like quinone oxidoreductases (NQOs) and heme oxygenases (HOs) are lower in neurons of the substantia nigra than in glial cells [16]. Antioxidants like glutathione (GSH) and thioredoxin protect the mitochondria against oxidative stress. The thioredoxin system is important for maintaining redox homeostasis. It consists of two oxidoreductases��thioredoxin reductase (TrxR) and thioredoxin (Trx)��which work together to reduce disulfide bonds in substrate proteins.
Apart from its direct antioxidant function, thioredoxin’s interaction with apoptosis signal-regulating kinase 1 (ASK1) can modulate gene expression of p38 MAPK and JNK [17]. GSH nonenzymatically scavenges free radicals like superoxide, nitric oxide, hydroxyl radical, and peroxynitrite. It works as an electron donor in the reaction catalysed by glutathione peroxidase which reduces H2O2 to water. Levels of glutathione decrease in dopaminergic neurons of the substantia nigra pars compacta (SNpc). This decrease occurs early in disease pathogenesis and is even seen in presymptomatic Parkinson’s disease or incidental Lewy body disease [18]. Dopamine may cause upregulation of GSH synthesis.
Blocking an enzyme in the dopamine synthesis pathway prevented increase in glutathione levels in SHSY5Y cells. Dopamine may upregulate transcription of genes involved in glutathione synthesis and release [19]. Antioxidant activity is also provided by detoxifying enzymes like superoxide dismutases (the cytosolic superoxide dismutase (SOD1) and the mitochondrial isoform (SOD2)), catalase (Cat), glutathione peroxidase (GPX), phospholipid hydroperoxide glutathione peroxidase (PGPX), glutathione reductase (GR), peroxiredoxins (PRX3/5), glutaredoxin (GRX2), thioredoxin (TRX2), and thioredoxin reductase (TRXR2). Activity of these enzymes gets disrupted in oxidative stress associated with neurodegenerative disease. SOD1 mutations are well known in amyotrophic lateral sclerosis��a disease characterised by loss of motor neurons of the central nervous system.
Recent studies on ALS show that overexpression of the mitochondrial superoxide dismutase (SOD2) can decrease SOD1 associated cytotoxicity and cell death in human neuroblastoma cell line LAN5 expressing mutant SOD1 [20]. Amyloid Cilengitide precursor protein (APP) mutant/MnSOD heterozygous knockout (APP19959/MnSOD+/-) mice show increased levels of Amyloid beta in Alzheimer’s disease model [21].