The tissue expression profile of TSGA10 mRNA throughout various o

The tissue expression profile of TSGA10 mRNA throughout various organs was studied by quantitative PCR performed on cDNA from human tissue. Primers were designed with Beacon Designer® version 5.11 software (Premier Biosoft, Palo Alto, CA, USA) with one primer flanking an intron–exon junction to avoid amplification of genomic DNA. Quantitative PCR was carried out on human normalized multiple-tissue cDNA panels (BD Bio Sciences, Palo Alto, CA, USA) as well as pituitary, aorta (Stratagene

Cloning Systems) and adrenal cortex cDNA prepared from normal adrenal tissue removed during adrenal adenoma surgery. Reactions were performed on a MyiQ iCycler (Bio-Rad, Hercules, CA, USA) in a volume of 25 μl, with 200 nm of each primer using iQ™ SYBR®Green BVD-523 ic50 supermix (Bio-Rad) as per the manufacturer’s instructions. All samples were run in triplicate. Thermal cycles consisted of an initial denaturation step of 95 °C for 3 min, followed by 40 cycles of 95 °C for 15 s, 60 °C for 30 s and 72 °C for 30 s. Standard curves were then established from the serial dilution of TSGA10 and control glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) PCR templates. TSGA10 mRNA levels were deduced from the standard curve and normalized to the endogenous GAPDH tissue content. A total of 27 cDNA clones were isolated and identified from immunoscreening of a human pituitary cDNA expression library with the sera from two APS1 patients, one with clinical GH deficiency and one with no reported pituitary manifestations. These clones represented 11 different proteins of ABT-888 in vivo which one was TPH isoform 1, a well-known APS1 autoantigen [19]. Recombinant proteins PFKL from the remaining 10 cDNA clones were produced by ITT and immunoprecipitation was performed against a test panel of sera from six APS1 patients and five healthy blood donors to determine the possible antigenicity. Most of these recombinant products were recognized solely by the screening serum, by both APS1 sera and control sera or by none of the sera. A single clone TDRD6, isolated from the patient with pituitary manifestation was further analysed

and found in 49% of APS1 patients as reported previously [15]. An additional cDNA clone isolated from the patient without any pituitary deficits encoded testis specific, 10 (TSGA10), a gene located on chromosome 2q11.2. ITT of two of the TSGA10 clones resulted in good quantities of recombinant proteins that were used for immunoprecipitation with the test panel of sera. Both TSGA10 recombinant proteins were efficiently immunoprecipitated by the screening serum but not by any of the healthy controls; one of the corresponding TSGA10 clones was therefore selected for further studies. The TSGA10 gene consists of 19 exons spanning over 80 kb of genomic DNA. Two transcript variants have been reported, differing in the 5′ UTR. Both variants are transcribed from exon 6 to exon 21 and encode a 698 amino acid protein.

Taken together, microarray assessment of the A  baumannii exponen

Taken together, microarray assessment of the A. baumannii exponential- and stationary-phase transcriptomes indicates that A. baumannii globally regulates its gene expression in a growth phase-dependent manner. Exponential phase growth correlates to expression of biological processes associated with rapidly dividing cells,

protein secretion, and possibly colonization. Conversely, stationary phase growth correlates selleck compound to expression of systems that ostensibly promote biofilm maturation. The coordinated regulation of these growth phase-dependent processes may mediate the organism’s ability to colonize and survive in both the host and hospital niche. The two most severe consequences of A. baumannii infection include septicemia and intubation tube-associated Idasanutlin manufacturer pneumonia (Seifert et al., 1995; Sunenshine et al., 2007), both of which lead to bacterial dissemination to distal organs. A common approach to investigate the mechanisms that allow

for bacterial survival and persistence in blood is through the culturing of cells in human serum. Indeed, several A. baumannii virulence factors, including phospholipase D and outer membrane protein A, augment the organism’s ability to survive in human serum and contribute to disease in animals (Kim et al., 2009; Russo et al., 2009, 2010; Jacobs et al., 2010; Luke et al., 2010). However, the question remains as to what additional biological the systems mediate the ability of A. baumannii to survive in human serum. Defining these molecular components may provide novel strategies for the therapeutic intervention of Acinetobacter infections. As an initial step toward defining these processes, we characterized the transcriptional response of the serum-resistant A. baumannii strain 98-37-09 during growth in human serum. To do so, 98-37-09 was cultured to exponential or stationary phase in 100% normal

human serum, RNA was extracted, and microarrays were used to compare the expression profiles of cells grown in serum to those of cells grown in LB medium, allowing for the identification of genes that most likely contribute specifically to growth in serum, as opposed to growth in general. A total of 547 genes exhibited higher transcript levels (≥ twofold; t-test; P ≤ 0.05) during exponential phase of growth in serum, in comparison with exponential growth in LB medium. Further, 85 transcripts were predominantly expressed within stationary phase 98-37-09 cells grown in serum, in comparison with stationary phase growth in LB. The entire data set is provided in Table S2. As elaborated below, a more thorough assessment of these genes revealed that during growth in human serum A. baumannii upregulates potential virulence-associated biological systems that allow it to acquire iron, invade host tissues, and resist antibiotic challenge.

He has been a consultant to Basilea and Merck and received speake

He has been a consultant to Basilea and Merck and received speaker’s fees from Merck, Pfizer, Schering-Plough, Gilead and Janssen Pharmaceutica. All other Tofacitinib order authors: no potential conflicts of interest. The authors alone are responsible for the content and writing of the manuscript.


“Invasive fungal infections (IFI) are major causes of death in high-risk haematological patients receiving induction therapy for acute leukaemia or intensified immunosuppression due to acute or chronic graft-vs.-host disease (GvHD) following allogeneic stem cell transplantation (SCT). Recently, two randomised studies showed the efficacy of a posaconazole prophylaxis (PP) in these patients to prevent IFI. This prompted the strong recommendation for the use of PP in national and international guidelines. As we started PP in our leukaemia and transplantation unit in summer 2007, we retrospectively analysed the impact of PP on the incidence of possible, probable or proven IFI in this group Raf inhibitor of patients. Incidence of IFI according to the revised EORTC criteria,

published in 2008, was reviewed retrospectively in a group of high-risk patients treated in our unit 1 year before the start of PP compared with the same group in the following year with PP. First analysis was performed on an intention-to-treat basis comparing patients Thiamine-diphosphate kinase during 1 year of PP with the same group of patients in the year before the start of PP. In a second, deeper analysis, patients were grouped for fluconazole or posaconazole irrespective of the time period the prophylaxis was given. In a first intent-to-treat analysis, 56 patients were analysed in the period without PP (noPP) compared with 34 patients in the period with PP. Overall IFI rates (possible, probable and proven IFI) were reduced from 47% (noPP group) to 35% (PP group). In a second analysis, only patients receiving either fluconazole or PP were analysed, resulting in 29 patients in the

noPP group and 36 patients in the PP group. There was a reduction in overall IFI in the PP group especially in the acute myeloid leukaemia (AML) induction patients, but this does not reach statistical significance because of low patient numbers. However, initiation of antifungal therapy was significantly less frequent in AML induction patients in the PP group compared with the noPP group. Unfortunately, this does not result in reduced mortality rates, as mortality in the PP group is higher (15% vs. 7%) than in noPP patients because of double the number of patients with severe GvHD in the PP group. Both breakthrough infections were documented in this subgroup of patients. Our data, collected in every day clinical practice, add further evidence to the advantage of a PP strategy in this group of high-risk patients.

01 (95% CI 0 70–1 44; P=0 97), respectively, compared with the 15

01 (95% CI 0.70–1.44; P=0.97), respectively, compared with the 1513 A and −762 T alleles. Polymorphisms at the 1513 locus had a statistically significant association with P2X7 variants

and tuberculosis susceptibility, while the −762 locus allele variants were not significantly associated with P2X7 variants and tuberculosis susceptibility. Tuberculosis is a major cause of morbidity and mortality worldwide, especially in Asia and Africa. Genetic variability, combined with environmental factors, are expected to contribute to the risk of developing active tuberculosis (Cooke & Hill, 2001). Human P2X7, which encodes the P2X7 receptor, has been cloned and mapped to human chromosome 12q24 and linked to tuberculosis susceptibility (Buell et al., 1998). The NVP-BKM120 solubility dmso P2X7 receptor is a ligand-gated cation channel that is highly expressed on human and murine macrophages (Nicke

et al., 1998; Gu et al., 2001). The activation of P2X7 by adenosine click here triphosphate (ATP) causes the immediate opening of a cation-selective channel, allowing the influx of Ca2+ and Na+ and the efflux of K+. This initiates a number of downstream signaling events, including caspase activation, resulting in apoptosis and phospholipase D (PLD) activation, which promotes phagosome–lysosome fusion, resulting in mycobacteria death (Humphreys et al., 2000; Kusner & Barton, 2001; Coutinho-Silva et al., 2003). P2X7 is highly polymorphic and several single nucleotide polymorphisms (SNPs) that

lead to loss of receptor function have been described (Fernando et al., 2005; Shemon et al., 2006). The most common is the 1513AC polymorphism, resulting in a glutamic acid to alanine substitution at position 496. This substitution results in the expression of a nonfunctional P2X7 receptor in macrophages from subjects homozygous for the 1513 C allele and patients heterozygous at this locus have impaired P2X7 receptor function. Additionally, the −762TC SNP Vasopressin Receptor in the P2X7 promoter region has been shown to be protective against tuberculosis in a Gambian population (Li et al., 2002). However, there is no evidence that the −762 C allele has functional consequences for gene expression. Several studies have looked at associations between the P2X7 gene 1513 and −762 loci allele variants and susceptibility to tuberculosis; however, these analyses have yielded mixed results depending on the population studied, in part due to the lack of adequate statistical power, selection bias or population diversity. Because a metaanalysis may overcome some of these methodological difficulties, a systematic review of the literature using metaanalysis was carried out as a means of providing a quantitative estimate on the association between P2X7 polymorphisms and susceptibility tuberculosis. To the best of our knowledge, no metaanalysis of the literature exploring the relationship between P2X7 gene polymorphisms and susceptibility to tuberculosis has been carried out to date.

3b) The CD4+ T-cell populations were further evaluated by means

3b). The CD4+ T-cell populations were further evaluated by means of RT-qPCR assays, which revealed that the ‘post-sort’ CD25high T cells showed greater expression of transcripts encoding FOXP3 (geometric mean GED ratio 3·85; n = 4) and IL-10 (3·25; n = 4) than the CD25− cells at the same time-point; over-expression Daporinad of FOXP3 (3·84; n = 4) was also evident at the point of admixture of the cells (‘pre-assay’), but transcripts encoding transforming growth factor-β (TGF-β) and pro-inflammatory cytokines generally appeared to be less abundant in the CD25high T cells at both time-points (Fig. 3c). The CD4+ CD25high T cells were able to suppress

the proliferation of activated CD4+ responder T cells in vitro, whereas the CD4+ CD25− cells showed no suppressive properties: proliferation was suppressed by 70·2 ± 4·6% (mean ± SEM) in a total of nine independent experiments performed with T cells derived from both PB and LNs (Fig. 3d). When cultured alone, the CD4+ CD25high T cells showed anergy that could be broken by the addition Palbociclib supplier of IL-2 (20 U/ml), whereas the CD4+ CD25− cells proliferated robustly with or without exogenous IL-2 (Fig. 3d).

This study has characterized the phenotype and function of canine CD4+ CD25high FOXP3high T cells, providing direct evidence of their suppressive function in vitro. The existence of canine Treg cells has been surmised for several years, initially in studies of radiation chimaeras,47 progressive myelopathy of German shepherd dogs46 and the action of a novel anti-arthritic

drug in beagles.45 A population of canine LY294002 CD4+ T cells with the phenotypic characteristics of Treg cells has been identified using an anti-mouse/rat Foxp3 mAb.48–52 However, direct evidence of regulatory function has remained elusive until now. The current study has documented FOXP3 expression by subpopulations of both CD4+ and CD8+ T cells, though the former predominated; furthermore, we provide indirect evidence for the existence of a peripheral CD4− CD8− FOXP3+ T cell population (Fig. 1a,b,e). The antibody clone used in this and other studies, FJK-16s, has been assumed to cross-react with canine FOXP3,49–52 supported by a pattern of staining resembling that in other species, including negligible reactivity with B cells and neutrophils. Studies have also demonstrated specific staining of cell lines transfected with a construct encoding the canine protein.64 The CD4− CD8− FOXP3+ cells were thought to be T cells, although four-colour staining – currently challenging owing to the limited availability of commercial mAbs in suitable formats – would need to be performed to confirm this notion. Double-negative (DN) Treg cells have been described in both mice67 and humans,68 but in both species they are FOXP3−, prompting the intriguing possibility that canine DN FOXP3+ cells represent a unique regulatory population – although an alternative possibility is that these cells are DN Tcon cells that have up-regulated FOXP3 with activation in vivo.

Here, I will take advantage of very recent work conducted on bird

Here, I will take advantage of very recent work conducted on bird–parasite associations to show that tolerance and resistance can rapidly evolve in natural populations exposed to epidemic waves. Evolutionary biologists define parasite virulence as the fitness cost paid LY294002 manufacturer by infected hosts [9]. It is striking to note that parasites do not exert similar costs to their hosts. Some parasites can persist for years in a latent form with little or no cost for the host; others produce extensive damage that can result in a rapid host death. Why is there this variability? What are the selection pressures that drive the

evolution of virulence towards lethal or benign variants? How much of parasite evolution is due to differences in host defences? How does parasite virulence, in turn, drive the evolution of

host defence strategies? Even though early work has seen virulence has an intrinsic parasite trait, it is now well established that virulence is a combination trait that depends on the parasite, the host and the environment where the interaction takes place [10]. During the last decades, theory on the evolution of parasite virulence has been erected on the assumption that there is a trade-off for the parasite between the benefits induced by within-host multiplication (higher number of propagules enhances the probability of transmission to new hosts) and the cost induced by host death (host death usually stops parasite Poziotinib in vivo transmission) [10]. A parasite that reproduces rapidly has a higher chance to be successfully transmitted per unit time than a parasite that multiplies slowly. Janus kinase (JAK) However, rapidly

multiplying parasites are those that also risk killing the host. Parasites have therefore to cope with these conflicting selection pressures, on the one hand maximizing the number of propagules produced and on the other hand avoiding killing the host before any transmission has occurred. This general model of virulence evolution has been called the trade-off model and has received considerable attention from theoreticians and empiricists (see 10 for a recent review). Even though a few experimental models have provided supportive evidence for the trade-off model of virulence evolution [11-13], in many host–parasite interactions there is no simple relationship between parasite density (the number of parasites per infected host) and the cost of the infection [14]. It should also be noted that this theoretical framework works poorly for macroparasites that do not multiply within their final host. There are several reasons why parasite multiplication and host damage can be decoupled, one being that the cost of infection might be more due to an overreacting host defence rather than a direct damage due to parasite multiplication [14, 15].


“To assess whether interleukin (IL)-1beta, IL-18 and inter


“To assess whether interleukin (IL)-1beta, IL-18 and interleukin-1 converting enzyme (ICE) are involved in the pathogenesis of endometriosis. Peritoneal fluid (PF) was obtained from 85 women with and without endometriosis.

Peritoneal macrophages were cultured and the culture media collected. IL-1beta, IL-18 and ICE levels were measured by the enzyme-linked immunosorbent assay (ELISA). Levels of IL-1beta and ICE in PF of women with endometriosis were higher than those in the control group. However, PF level of IL-18 was significantly lower in the study group than in the controls. Higher secretion of IL-1beta by peritoneal macrophages and lower IL-18 and ICE in endometriosis patients than in control Ivacaftor were observed. Following lipopolysaccharide (LPS) stimulation, the macrophages secreted more IL-1beta, IL-18 and ICE in all groups. The results pointed to impairment

of the secretion of the IL-1 cytokine family in endometriosis. Invalid IL-1beta and IL-18 maturation by ICE may be an important pathogenic factor selleck products in endometriosis. “
“Neutrophils potently kill tumour cells in the presence of anti-tumour antibodies in vitro. However, for in vivo targeting, the neutrophils need to extravasate from the circulation by passing through endothelial barriers. To study neutrophil migration in the presence of endothelial cells in vitro, we established a three-dimensional collagen culture in which SK-BR-3 tumour colonies were grown in the presence or absence of an endothelial barrier. We demonstrated that — in contrast to targeting FcγR on neutrophils with mAbs — targeting the immunoglobulin A Fc receptor (FcαRI) instead triggered Montelukast Sodium neutrophil migration and degranulation leading to tumour destruction, which coincided with release of the pro-inflammatory cytokines interleukin (IL)-1β and tumour necrosis factor (TNF)-α. Interestingly, neutrophil migration was enhanced in the presence of endothelial cells, which coincided with production of significant levels of the neutrophil chemokine IL-8. This supports the idea that stimulation of neutrophil FcαRI, but not

FcγR, initiates cross-talk between neutrophils and endothelial cells, leading to enhanced neutrophil migration towards tumour colonies and subsequent tumour killing. Neutrophils represent the most populous type of cytotoxic effector cells within the blood and their numbers can easily be increased by treatment with granulocyte colony-stimulating factor (G-CSF) [1]. Because depletion of these cells resulted in increased tumour outgrowth in animal models, neutrophils may play a role in tumour rejection in vivo [2-4]. It is also becoming increasingly clear that neutrophils secrete a plethora of cytokines and chemokines that can attract other immune cells, such as monocytes, dendritic cells and T cells [5], which may result in more generalised anti-tumour immune responses.

Moreover, in 2003 Allan et al described that inhibition of caspa

Moreover, in 2003 Allan et al. described that inhibition of caspase-9 is mediated through phosphorylation by Erk 36. Our observation that inhibition of either Erk 3 or SphK (Fig. 3) each results in strongly reduced cytokine release from CXCL4-stimulated monocytes, extent corresponding findings for TNF-activated monocytes

and C5a-treated macrophages 15, 16. Having in mind that in CXCL4-treated monocytes cytokine release as well as rescue from apoptosis are regulated by SphK1 as well as Erk the question arise whether these molecules might regulate each other. By investigating this possibility selleck chemical in more detail, we could clearly demonstrate that Erk phosphorylation is totally blocked in SKI-treated monocytes (Fig. 5), indicating that Erk is located downstream of SphK. Finally, the finding that high dosages of S1P reduce apoptosis rates in monocytes might be related to its ability to induce Erk phosphorylation (Fig. 6D). The activation of Erk by SphK or S1P has been reported by others too. Monick et al. as well as Chandru and Boggaram demonstrated that in lung epithelial cells treatment with S1P leads to the phosphorylation of Erk 37, 38. According to our results, S1P mediates

only a partial but significant reduction of apoptosis (compared with unstimulated cells; Fig. 6A), which might be the result of a shorter duration of Erk activation as compared with the more prolonged Erk phosphorylation induced by CXCL4 (Fig. 6D). Taken www.selleckchem.com/products/AG-014699.html together, we identified SphK1 as an essential signaling element in CXCL4-induced monocyte activation. By several lines of evidence

we could check details demonstrate that CXCL4-mediated ROS formation, as well as cytokine/chemokine expression, and rescue from apoptosis depends on SphK1 activity. Furthermore, our data indicate that the protective effect of CXCL4 on monocyte survival involves sequential activation of SphK and Erk resulting in an inhibition of caspase activation. Further studies will address the question by which mechanisms CXCL4 regulates SphK activity and whether SphK/S1P is involved in CXCL4-induced monocyte differentiation. Human natural CXCL4 was purified in our laboratory from release supernatants of thrombin-stimulated platelets, as described previously 39. Antibodies directed against Erk1 p44 (serum K-23; cross-reactive to Erk2 p42), and phospho-Erk (clone E-4) were purchased from Santa Cruz Biotechnology (Heidelberg, Germany), while anti-SphK1 antiserum was purchased from ABGENT (Bioggio-Lugano, Switzerland). Alexa680-conjugated goat anti-mouse IgG was obtained from MoBiTec (Göttingen, Germany), and IRDye800-conjugated goat anti-rabbit IgG was from Biotrend (Köln, Germany). Inhibitors directed against SphK (SKI; 2-(p-hydroxyanilino)-4-(p-chlorophenyl) thiazole 17, or DMS), MEK/Erk (PD098059; 2′-amino-3′-methoxyflavone), Gi proteins (PTX), and D-erythro-S1P were purchased from Calbiochem (Schwalbach, Germany).

The most striking and constant finding was the dramatic

d

The most striking and constant finding was the dramatic

decrease of dendritic (CD1a+CD2–CD3–) cells from early to late lesions, encompassed by an increase in the proportions of total T cells. These are the only statistically significant (PStudent’s t < 0·05) differences between the two groups of patients. The proportions of helper and cytotoxic T cells; B cells, activated cells and natural killer (NK) cells were not significantly different. In previous studies we have demonstrated that peripheral blood lymphocyte subsets are not different in patients with vitiligo than in normal individuals, despite the time of evolution of the disease; therefore, it seems that these changes are localized to the skin lesions and do not result from a central disorder. Also unexpected was the scant number of B cells Atezolizumab in vitro in early stages of the disease and its practical absence in late stages of the disorder. The core finding of this study is suggestive of the possibility that the immune self-reactivity seen in vitililgo is antigen-driven, rather than spontaneous. For a long time it has been considered that triggering of autoimmune reactants, mainly

autoantibodies, does not follow the regular pathway as non-self-antigens. Anti-DNA antibodies, for instance, are not known to be produced VX-809 mouse after DNA fragments are presented to T cells by major histocompatibility complex (MHC) molecules in antigen-presenting cells in patients with systemic lupus erythematosus, nor are rheumatoid factors believed to be produced after IgG molecules or immune complexes are presented to the immune system. For the vast majority of autoantibodies it is believed that autoreactive clones are ‘freed’ from regulatory mechanisms, thus

resulting in the spontaneous activation of such clones and the synthesis and AZD9291 solubility dmso secretion of their autoantibody products [30]. Polyclonal activation, superantigens, equivocal co-operation and other mechanisms have been mentioned and proposed; however, it is thought generally that specific antigen-driven responses are not involved in autoimmune diseases [30]. The finding of abundant dendritic cells in infiltrates from early biopsies suggests strongly that an antigen-presentation process is taking place at this stage of the pathogenetic process. It is possible, therefore, to hypothesize that a primary non-autoimmune phenomenon causes the breakdown of melanocytes. This primary process, which could be traumatic, physical or infectious, might result in the exposure and uptake of intracellular melanocyte-associated antigens by professional antigen-presenting cells and – in individuals with genetic susceptibility – trigger a ‘traditional’ T cell-dependent immune response towards previously hidden self-antigenic structures.

No organism was isolated from the hemoculture Micrococcus spp wa

No organism was isolated from the hemoculture.Micrococcus spp. was isolated from the effluent culture, unfortunately, no specie identification and strain sensitivity for Micrococcus spp. was available by the microbiology laboratory. We were aware that vancomycin was recommended for treating this organism in previous literatures, however, regarding the favourable response of the current treatment, we decide to continue with cefazolin. The serialeffluent cleared up after 48 hours of treatment and CBC also returned to normal. No organism was isolated from follow-up effluent cultures on day 3, 7, and 15 of the treatment. Conclusion: Although Micrococcus infection is uncommon, it may potentially be a pathogen in immunocompromised

Opaganib supplier hosts RAD001 cell line and patients on peritoneal dialysis. More data concerning this organism and further study on the strain sensitivity to antimicrobial agents may be beneficial. SRISUWAN KONGGRAPUN Phramongkutklao Hospital Background: Appropriate dry weight during hemodialysis (HD) is critical for optimizing patient outcomes through prevention of chronic volume overload, hypertension and cardiomyopathy. In children, dry weights change frequently because of their growth and nutritional status. Therefore, accurate

assessment of dry weight is challenging. In most cases, dry weight is an estimate determined by physician which needs the postdialysis weight down to the point where patient does not show any signs of hypotension and volume overload. The bioelectrical impedance analysis (BIA) may be used as an alternative method to evaluate the dry weight. Methods: Dry weights from physician’s assessment

were compared with BIA method (Maltron Bioscan). The correlation between the difference of both methods and intradialytic symptoms such as fatique, not being well, thirst, cramp, headache, abdominal pain, post hemodialysis total body water (TBW), extra cellular water (ECW) and post hemodialysis blood pressure were evaluated. Results: There were 3 boys and 3 girls ADP ribosylation factor with the mean age of 13.6 years (11–18). The mean dry weight in the physician’s assessment method was 35.78 ± 13 kg in comparison to the BIA method (34.55 ± 13 kg), and the mean difference was 1.23 ± 1.1 kg, p 0.042). The difference of both dry weights tend to correlated with intradialytic symptoms (r 0.267, p 0.609), post HD TBW ≥ 60% (r 0.674, p 0.142) and post HD systolic hypertension (r 0.306 p 0.555). However, there are no statistically significant except post HD ECW ≥ 40% (r 0.867, p 0.025). Conclusion: The study suggested that achieving dry weight with BIA may reduce the risk of chronic volume overload in children who on chronic hemodialysis. The routine using a BIA for dry weight assessment in children may be used because it is a simple method and does not depend on examiner’s capability, and may yield improved the better outcome. Further studies in chronic hemodialysis children are recommended to consider BIA method as the gold standard.