In addition, the microvasculature and its endothelium are a large

In addition, the microvasculature and its endothelium are a large metabolic tissue in their own right required to adapt its structure and function to both maintain microcirculatory integrity and meet its own metabolic needs throughout the life course [5]. There is accumulating evidence that deficits in microvascular structure and function may be a prodromal indicator and independent risk determinant in metabolic syndrome, hypertension, and diabetes [1,7]. Changes in small vessel

structure and function can be detected, often before the onset of Gemcitabine order macro-vascular disease and the development of end organ damage common to hypertension and obesity-associated clinical disorders. Thus, the clinical assessment of the microcirculation offers an important tool in disease risk stratification [8] and of the evaluation of the impact of both non modifiable (age) [5] and modifiable (lifestyle and environmental) [7] risk factors. However, given the lack of heterogeneity across microvascular beds and the lack of standardized tools to investigate microvascular function in humans routinely, the quantitative clinical evaluation of microvascular deficits remains a challenge [6]. David Strain and colleagues [8] review the microcirculation in epidemiology and how large this website scale epidemiological studies have identified the

associations between disordered microvascular control and subsequent target organ damage. They provide examples of how measuring microvascular status in large cohorts and epidemiological modeling have helped to establish the nature of the complex bidirectional interaction between microcirculatory for outcome measures and end organ damage

and how this in turn may inform prospective studies, intervention trials, and drive change in clinical practice. One such example is the interplay between diabetic nephropathy, metabolic syndrome and atherosclerosis. Strain and colleagues highlight this complexity in a series of reports on inter-ethnic comparisons between those of European and African Caribbean descent. While it might be anticipated that African Caribbeans have better microvascular function given that they are known to be relatively protected from atherosclerotic disease, paradoxically, the opposite is observed with the general African Caribbean population having attenuated microvascular function compared with Europeans. Findings from other large epidemiology studies, while supporting the role of microcirculatory dysfunction in the etiopathogenesis of cardiovascular disease, challenge the axiom that there is a “gold standard” endothelial assessment tool and that the same mechanisms underlie endothelial dysfunction across all vascular beds.

Finally, we analysed the observed frequencies of cytokine-produci

Finally, we analysed the observed frequencies of cytokine-producing CD4+ T cells by scoring the results as negative (responses <0.01%) versus positive and compared the 3+ CD4+ T cells statistically in the different groups of individuals. As summarized in Dorsomorphin Table 1, the highest proportion of positive responses was found among patients with active TB, followed by those patients with cured TB (at the end of anti-mycobacterial treatment). Lower proportions of 3+ CD4+ T cells positive responses were found in individuals with LTBI, whereas all of the controls were negative (data not shown). Pair-wise comparisons of the positivity

RG7420 rates for 3+ CD4+ T cells in the four groups of individuals are summarized in

Table 1: the proportion of positive responses among active TB-infected patients was significantly higher than that recorded among patients with cured TB, individuals with LTBI and control subjects. Taken together, these data suggest that 3+ CD4+ T cells simultaneously secreting IFN-γ, IL-2 and TNF-α to three antigens of M. tuberculosis, Ag85B, ESAT-6 and the 16-kDa antigen, are more frequently found in patients with current or historic TB disease compared with LTBI which are able to control M. tuberculosis replication. This study provides a detailed analysis of the frequency and quality of cytokine-producing CD4+ T cells in patients with active TB disease, cured TB and in subjects with LTBI. Importantly, we show here that the frequency of CD4+ T lymphocytes that produce multiple cytokines (IFN-γ, IL-2 Farnesyltransferase and TNF-α)

is significantly higher in subjects with active TB disease, not supporting current beliefs that such responses may be associated with protection. In contrast, CD4+ T cells that produced IL-2 and IFN-γ, or IFN-γ alone, were lower in active TB-infected patients compared with cured TB patients or individuals who controlled infection naturally (LTBI). Lending further support to our results is the observation that this pattern of distribution of cytokine-producing CD4+ T cells was consistently observed in response to three different M. tuberculosis antigens, Ag85B, ESAT-6 and 16 kDa antigen. Data from HIV and other chronic viral infections have associated CD4+ and/or CD8+ T cells that simultaneously produce the three cytokines IFN-γ, IL-2 and TNF-α, with non-disease progression and efficient control of infection 20, 22, 23. Such “multifunctional” cell profiles have subsequently also been used to define correlates of vaccine-mediated protection against Leishmania11 and M. tuberculosis12, 24, 25 in mouse models of vaccination.

Frequencies of individual genotypes were similar to those reporte

Frequencies of individual genotypes were similar to those reported previously in other Caucasian control populations [23–25]. We observed more G-allele carriers in the severe RXDX-106 cost AH patient

group than in other ALD patients. Moreover, among AH patients, the G-allele was more frequent in the severe form of the disease (Table 3a). However, the CCL2 polymorphism −2518G-allele was not associated with patient survival. Indeed, there was no difference in 90-day survival between G-carriers and non-G-carriers patients in the entire population of ALD (88·1% ± 3·5% versus 88·4% ± 3·2%, P = 0·909), nor in a subgroup of patients with alcoholic hepatitis (83·8% ± 5·6% versus 81·6% ± 5·6%, P = 0·792) and severe alcoholic hepatitis (75·9% ± 9·4% versus 64·3% ± 12·8%, P = 0·528). We performed CCR2 190 A/G polymorphism genotyping in this cohort SB525334 solubility dmso of ALD patients and we found no difference between genotypes (Table 3b). In the present study, we show that plasma levels and hepatic expression of CCL2 are increased in a large cohort of biopsy-proven ALD patients, particularly those with severe

AH. Interestingly, this CCL2 over-expression is associated with parameters of disease severity such as hepatic venous pressure gradient and model for end-stage liver disease (MELD) score. We found no relationship between plasma levels or hepatic expression of CCL2 and 90-day survival. Nevertheless, these results should be viewed with caution, as many patients were lost to follow-up. We also measured CCL2 plasma levels in patients with severe AH before Dolutegravir research buy and after 7 days of steroid therapy, and we showed a trend towards decreased CCL2 plasma levels after treatment. However, the reason why the CCL2 plasma level decreased after steroid treatment is not clear, and further studies on a large cohort of AH patients are required. Moreover, we demonstrated that CCL2 liver expression is correlated with neutrophil infiltrates and IL-8 liver expression. CCL2 is a CC chemokine which is chemotactic for monocytes and lymphocytes. Arguments in the literature suggest that, under inflammatory conditions, neutrophils undergo phenotypic changes enabling them

to respond to chemokines that are functionally inactive under resting conditions [26,27]. However, we showed that circulating neutrophils of ALD patients did not express CCR2, suggesting that CCL2 does not directly recruit neutrophils via this receptor. Nevertheless, CCL2 could play a role in neutrophil recruitment via a receptor other than CCR2; indeed, a recent study showed, in an experimental model of ALD, that CCL2-deficient mice were protected against alcoholic liver injury independently of CCR2. Interestingly, KC/IL-8 mRNA liver expression was decreased significantly in alcohol-fed CCL2-deficient mice [16]. In agreement with those results, but in humans, we show a very strong correlation between CCL2 and IL8 mRNA liver expression.

Interestingly, only CY but not other drugs, in combination with D

Interestingly, only CY but not other drugs, in combination with DN Treg-cell transfer, helped the survival of BM cell

in the recipients (Fig. 1). It still remains elusive why, other than rapamycin, FK506 or CyA, only CY treatment could help the induction-mixed chimerism even though they all preferentially target-activated cells. CY, predominantly toxic to proliferating cells, has SB431542 been shown to have a great advantage in prolonging heart graft survival but not in achieving tolerance in fully MHC-mismatched transplantation. Unfortunately, prolonged treatment with this drug elicits severe side effects in patients. A comprehensive approach is to reduce the use of immunosuppressive drugs by combining them with another treatment. Indeed, using CY one or two times along with donor-specific transfusion Selleck BKM120 (DST) helps BM transplantation and promotes mixed chimerism [[42-44]]. However, fetal GVHD developed in these mice. Although the pathophysiology detail of GVHD remains elusive, donor CD4+ and CD8+ T cells have been held critically responsible. In our protocol, donor CD4+ and CD8+ T-cells transplantation developed GVHD and mortality (Fig. 2). In contrast, donor DN-T

cell transfer groups survived more than 100 days with no pathological evidence of GVHD (Fig. 2). Moreover, previous studies indicated that DN Treg cells could suppress T cell-mediated GVHD [[27, 45]]. More importantly, the benefits of DN Treg cells in GVHD are supported in a clinical study. All patients who demonstrated more than 1% DN Treg cells did not develop GVHD after

hematopoietic stem cell transplantation [[46]], which hints on the role of DN Treg cells in suppressing GVHD. Hence, the results that DN Treg cells can suppress GVHD give a VAV2 strong rationale for its clinical application in BM transplantation. General immunosuppression can control T cells but hamper antitumor and infection in patients. Reducing the clonal size of donor-reactive T cells has been recognized as a prerequisite for inducing tolerance in transplantation [[47, 48]]. Clonal deletion of donor reactive T cells permits donor graft survival while keep antitumor and antiinfection immunity in recipients. It has been shown that the DST combined with anti-CD154 blocking antibody can induce clonal T-cell exhaustion [[49, 50]]. Previous studies have shown that clonal deletion of developing T cells was correlated with the induction of mixed chimerism [[43, 44, 51]]. It was reported a high frequency of DN-T cells bearing autoreactive TCR that caused deletion of CD4+ or CD8+ T cells [[52]]. In this study, after adoptive transfer of donor DN Treg cells, the recipient T-cell proliferation was significantly inhibited (Fig. 3C). The percentages of several major TCR subtypes in recipients were reduced in CD4+ and CD8+ T cells (Fig. 3A and B), implying that these TCRs could be the major responsive subtypes in rejecting allografts.

© 2011

Wiley-Liss, Inc Microsurgery, 2011 “
“Perfo

© 2011

Wiley-Liss, Inc. Microsurgery, 2011. “
“Perforator flaps as an innovative method for soft tissue transfer that maximizes check details function preservation, were originally introduced primarily as free flaps. Their reliability and versatility has been found to not differ from other sources of free flaps where total failure is an uncommon event. Partial failure should also be recognized as a possible dilemma that is perhaps more of a unique untoward sequela of perforator flaps. A retrospective review of our flap experience over the past decade included 310 perforator free flaps. Partial perforator flap failure that required a second free flap for salvage was selected in 6 patients. All perforator free flaps in our experience that had some form of partial failure were anterolateral thigh [ALT] free flaps. Clinically initially unrecognizable but ultimately distal flap ischemia could be attributed to poor flap design, and was the cause of immediate partial flap necrosis in 2 cases. Delayed difficulties were complications not specific to perforator flaps. In all cases, a free flap was considered the best option, and a second perforator free flap proved to resolve all reconstructive

objectives. The root cause of partial failure of a perforator free flap was found to be either iatrogenic or de novo in origin. The proper design requires an awareness of the correct topographic axis and an understanding of the perforasome concept to better insure adequate flap perfusion. If a free flap is still BMN 673 chemical structure considered the best solution after a partial failure, the advantages and benefit of a second perforator free flap should not be overlooked. © 2013 Wiley Periodicals, Inc. Microsurgery 34:177–182, click here 2014. “
“Ultrasound (US) has been used in the management of carpal tunnel syndrome since the 1980s. The first report of US-guided carpal tunnel release (CTR) was published in 1997, with cadaver and clinical reports confirming the safe navigation of surgical tools

with US for division of the transverse carpal ligament. The MANOS CTR device was recently reported as a minimally invasive tool for CTR, and may be well suited for use with US guidance. The authors report three cases of US-guided CTR using the MANOS CTR device. The MANOS device was inserted in a blunt configuration into the safe zone, and the cutting surface was deployed with a thumb-activated trigger that simultaneously ejected a sharp through the palm. The transverse carpal ligament was divided safely and confirmed with US. US allowed for clear identification of the median nerve, safe zones, transverse carpal ligament, and the MANOS CTR device in relation to all pertinent structures of the carpal tunnel. Complete division of the transverse carpal ligament was confirmed in all three cases.

Because patients and their tumors are so variable, one should inc

Because patients and their tumors are so variable, one should include a mix of memory antigens (usually protein for CD4+ recall responses 30) to evaluate immune competence and changes throughout vaccination. This will also help to more objectively categorize an immune response as “strong” or “weak,” e.g. by comparing a vaccine-specific CTL response to an endogenous CMV response

if class I control peptides also are used. In addition, it is my personal opinion that we should also load a separate batch of control DC with relevant antigens for priming (e.g. HIV or other viral epitopes) to identify a superior DC vaccine in a small number of RXDX-106 patients. With increased vaccine efficacy, T cells will become more often detectable ex vivo, so that one can also sort tetramer-positive T cells for easier testing of mono- versus polyclonality

(the latter observed to occur with cocktail-matured DC 71, 72), polyfunctionality (which correlates – at least in viral disease – with clinical benefit 73, proliferative capacity (relevant as it reflects one memory T-cell feature), and transcriptome analysis (which appears to reflect priming by different vaccines, and in case of DC vaccines might reflect the DC transcriptome 74). With enhanced DC vaccines, one should then even see characteristic cellular and/or humoral signatures in whole blood as observed in case of the strong yellow fever vaccine Fluorouracil 75–78. Immunomonitoring requires standardization and reproducibility, ALOX15 an important component of which are discussion groups (e.g. the MIATA project, www.miataproject.org) and proficiency panels, which are already offered for tetramer staining, intracellular cytokine labeling, and Elispot assays by the CVC and the CIMT (see www.cancerresearch.org

and www.cimt.eu, respectively). I strongly support participation in such intercomparison programs to facilitate accurate and transparent data presentation. These are also high on the list of priorities, as MoDC cultured in GM-CSF+IL-15 are superior in vitro in inducing high-affinity CTL 79, 80. It remains difficult for us to generate a sufficient number of highly standardized DC under these conditions, which is a prerequisite for true GMP production. I suspect that similar problems have occurred to others, which explains why there are no data available yet on their immunogenicity in vivo in humans. First reported by E. Gilboa in 1996 (for review see 81), RNA-transfection of DC offers distinct opportunities, particularly since the unreliable “simple” addition of mRNA to DC has been substituted by electroporation 82, which allows strong protein expression and intracellular staining in the majority of DC, a prerequisite for reproducibility, validation, and thus GMP production 83. A crucial regulatory advantage is that mRNA transfection does not constitute gene therapy as mRNA is not integrated into the genome.

Immune suppression/evasion is one of the major impediments to the

Immune suppression/evasion is one of the major impediments to the development of effective immune therapy for cancer. Programmed death-1 receptor (PD-1) is a member of the B7 family that is expressed on activated T cells and is found to play an important role in immune

Lapatinib evasion. On binding its cognate ligands programmed death ligand (PDL)-1 or PDL-2, PD-1 down-regulates signaling by the T-cell receptor (TCR), inducing T-cell anergy and apoptosis and thus leading to immune suppression 1–6. Many human malignancies up-regulate PDL-1, and this up-regulation has been directly correlated with immune suppression and poor prognosis in several types of cancer 4, 7–11. The PD-1/PDL-1 interaction leads to suppression and apoptosis of tumor-infiltrating

effector lymphocytes in the tumor microenvironment 12, 13. Furthermore, PDL-1 was found to be an anti-apoptotic receptor on tumor cells, functioning as an “immune shield” and protecting tumor cells from T-cell cytotoxicity 14–16. More recently, it was found that blocking the PD-1/PDL-1 interaction promotes antigen-specific cytotoxic T lymphocyte (CTL) proliferation by heightening CTL resistance to Treg-cell Gefitinib mw inhibition, and limiting the inhibitory ability of Treg cells 17. Treg cells are inhibitory CD4+ T cells that are increased in cancer patients and can potentially form a barrier to eliciting effective immune response 17–22. Not surprisingly, the inactivation or depletion of Treg cells has been actively pursued, in order to develop more potent anti-tumor immunotherapies. In several studies, antibodies against the CD25 cell surface marker have been used to examine the feasibility of enhancing anti-tumor responses through the inhibition of regulatory cell activity. Depletion of Treg cells by anti-CD25 antibodies has led to enhanced immunity in several tumor models 23–25. One major obstacle Urease for using this approach

is that activated CD4+ and CD8+ T cells also express CD25, and use of anti-CD25 antibodies might also affect these cells. Use of other cell markers, such as CTLA-4, may also be insufficient since it was previously demonstrated that Treg cells from CTLA-4 knockout mice maintain their suppressive function 26, 27. Cyclophosphamide (CPM) has been used as a standard alkylating chemotherapeutic agent against certain solid tumors and lymphomas because of its direct cytotoxic effect and its inhibitory activity against actively dividing cells 28. While high doses of CPM may lead to the depletion of immune cells, low doses of CPM have been shown to enhance immune responses and induce anti-tumor immune-mediated effects by reducing the number and function of Treg cells 27, 29–33. Here, we hypothesize that combining inhibition of Treg cells with strategies that block the PD-1/PDL-1 interaction and vaccine would result in a potent anti-tumor immunotherapeutic strategy.

7 was accepted (Table 3) When the cut-off was lowered to 0 5, fo

7 was accepted (Table 3). When the cut-off was lowered to 0.5, four episodes had negative results on consecutive samples. On the other hand, 20 episodes out of 33 with no IA had positive GM results with a cut-off of 0.7 (Table 4). Four more episodes were rendered false positive when the cut-off was lowered to 0.5. Characteristics of patients with Anti-infection Compound Library in vivo false positive GM results and factors coinciding with the period of false positivities were summarised in Table 4. Patients received beta lactam antibiotics in all episodes but one. Piperacillin-tazobactam and/or amoxicillin-clavulanate were used in 19 episodes out of 58. In particular cases with false positive

results, piperacillin-tazobactam was used in four of 20 episodes and amoxicillin in one episode (Table 4). With regard to different cut-off values (1.5, 1.0, 0.7 and 0.5), calculations were made to define the sensitivity, specificity, negative and positive predictive values (Tables 5 and 6). In recent years, monitoring of serum GM levels by ELISA has become popular for the early diagnosis of IA because of its standardisation and the applicability in routine practice. In this study, we evaluated the way we handle high-risk patients for IA and the applicability BVD-523 of serum GM measurements in our routine practice and surveillance. The reported sensitivity and

the specificity of the serum GM measurements by Aspergillus Platelia® kit vary widely in the literature, mostly because of heterogeneity among the studies.20 Sensitivities as high as 100% are reported, whereas some studies report no positive results in proven cases or sensitivity as low as 17%.14,16,28–31 A recent meta-analysis revealed an overall sensitivity of 61% and specificity of 93% for proven and probable cases.20 Although the sensitivity

of GM assay differs among patient groups and may be very low, its specificity is quite good.20 This variation in the performance of the test is thought to be related to the inconsistency of the patient populations and the specimens used, the uncontrolled variables during the specimen transport or processing, Carbohydrate and the different disease definitions and cut-off points.25 In this study, with only five episodes of IA (proven and probable), we found 60% sensitivity and a very low specificity (20.8%) for GM assay with the use of the generally accepted 0.5 cut-off value. The very low positive predictive values in our study can also be explained by the low number of IA in our patient population. The predictive values of a test in clinical practice depend critically on the prevalence of the abnormality in the patients being tested; the rarer the abnormality the lower will be the positive predictive value. Several factors may explain the very low sensitivity.

In a steady state, elevated number of CD14++ CD16+ PBMs can be ex

In a steady state, elevated number of CD14++ CD16+ PBMs can be explained by relatively less trafficking of CD14++ CD16+ than CD14++ CD16− cells into inflammatory tissues. In stable asthmatic patients, we found decreased expression of CD16 on bronchial

macrophages, which may reflect preferential influx of CD16− PBMs into the airways in asthmatics as compared to non-asthmatic subjects [28]. However, during acute asthma attack such as that seen after allergen exposure, preferential sequestration of CD14++ CD16+ PBMs may occur. It has been demonstrated that acute skin injury results in preferential accumulation of CD16+ monocytes [29]. Chemokines are crucial in directing individual cell migration into inflammatory sites. Surprisingly, we were not able to correlate plasma concentration of two major monocyte chemotactic chemokines CCL2 and CX3CL1 with the number of circulating monocyte subsets. Cell Cycle inhibitor However, an www.selleckchem.com/products/AP24534.html inverse correlation between CCL17

and the number of circulating CD14++ CD16+ monocytes 24 h after allergen challenge supports the concept of involvement of CCL17 and its receptor CCR4 in monocyte activation/migration. Among all chemokines, CCL17 and CCL22 which are ligands of the CCR4 are crucial for the attraction of cells which fuel Th-2 type immune response [30]. In fact, the key role of CCR4 in migration of T cells into airways of asthmatic patients has already been demonstrated [30]. However, the role of CCR4 in migration of monocytes has not been investigated. There is also little information concerning the expression of CCR4 on individual subsets of PBMs. Elevated expression of CCR4 on PBMs has been demonstrated in rheumatoid arthritis patients but the study did not address the expression of CCR4 on individual PBM subpopulations [31]. The CCR4-dependent activation of macrophages may play a role in inflammatory response

and tissue remodelling [32]. In an experimental model of bleomycin-induced pulmonary fibrosis, CCR4 played a crucial role in activation of pulmonary macrophages which in turn led to pulmonary fibrosis. Although in that experimental model, genetic modification leading to the absence of CCR4 did Thymidine kinase not significantly affect inflammatory cell recruitment to the lungs in response to bleomycin challenge. Interestingly, lung macrophages in the CCR4 knockout mice differed morphologically from those in the wild-type mice. Unfortunately, our study cannot prove if CCR4 selectively affects migration of some monocyte subsets or influences activation and/or maturation of monocytes. However, strong increase in plasma concentration of CCL17 and expression of CCR4 on some CD14++ CD16+ PBMs whose number decreases after allergen challenge strongly suggest a possible cause–effect relationship.

To quantify the demyelinated area, transverse spinal cord cross-s

To quantify the demyelinated area, transverse spinal cord cross-sections from all regions of the spinal cord were analyzed (between five and eleven cross-sections per animal). The demyelinated area was measured in sections stained for Luxol Fast Blue/periodic acid-Schiff, and expressed as percentage

of total white matter. this website For statistical analysis, the mean per animal was calculated. Similarly, the numbers of inflammatory infiltrates were counted in all transverse spinal cord sections and the mean per section was calculated. To prepare single-cell suspensions from spleen, peripheral lymph nodes or thymus organs were cut into small pieces and meshed through a sieve. For cell preparation from spinal cords, mice were perfused with 25 mL PBS via the left cardiac ventricle under deep anaesthesia. The spinal cord was removed and collected MG-132 nmr in

cold medium (RPMI 1640, 0.5% BSA). A single-cell suspension was prepared using the gentleMACS dissociator (Miltenyi Biotec) and digestion with 0.5 mg/mL collagenase D and 20 μg/mL DNase I (both from Roche) for 30 min at 37°C. To stop digestion, 10 mmol EDTA was added for the last 5 min. To remove residual pieces of tissue, the suspension was filtered through a 100-μm filter. Cells were counted using a Guava PCA capillary flow cytometer and ViaCount solution (Millipore). Single-cell suspensions from spinal cord, lymph nodes, spleen, or thymus were suspended in staining buffer (PBS, 2.5% FCS, 0.1% NaN3, 20 μg/mL 2.4G2 (anti-FcγRII/III)) and incubated on ice with different combinations of the following fluorophore-conjugated mAb: Pacific Blue-conjugated KT3 (anti-CD3), PE- or PE-Cy7-conjugated GK1.5 (anti-CD4), Alexa Fluor 700-conjugated 53-6.72 (anti-CD8), FITC- or PE-conjugated IM7.8.1 (anti-CD44), Pacific Orange-conjugated RA3-6B2 (anti-B220), FITC- or PE-Cy7-conjugated MEL-14 (anti-CD62L), Allophycocyanin-Cy7-conjugated

30-F11 (anti-CD45, BioLegend), Allophycocyanin-Alexa Fluor 750-conjugated 53-6.7 (anti-CD8, eBioscience), and PE-conjugated O-methylated flavonoid 17B5 (anti-4-1BB, eBioscience), Ox-86 (anti-OX40), DTA-1 (anti-GITR, eBioscience), UC10-4F10 (anti-CTLA-4), 2E4 (anti-CD25). Ab from noncommercial sources were purified from hybridoma supernatants and coupled to the respective fluorophore by standard procedures. For intracellular staining of FoxP3, Alexa Fluor 647-conjugated FJK-16s and a commercial buffer set (both from eBioscience) were used. Isotype controls were used to control specificity of staining. To discriminate dead cells, either DAPI was added to live cells immediately before analysis or cells were incubated on ice for 25 min with 0.67 mM Pacific Orange succinimidyl ester (Invitrogen) prior to fixation (modified protocol from 25). In brief, 1×105–2×106 cells were analyzed on a LSR II flow cytometer (405, 488, and 633 nm excitation; BD Biosciences). Data were further analyzed with FlowJo Software (Treestar).