In addition, the microvasculature and its endothelium are a large metabolic tissue in their own right required to adapt its structure and function to both maintain microcirculatory integrity and meet its own metabolic needs throughout the life course [5]. There is accumulating evidence that deficits in microvascular structure and function may be a prodromal indicator and independent risk determinant in metabolic syndrome, hypertension, and diabetes [1,7]. Changes in small vessel
structure and function can be detected, often before the onset of Gemcitabine order macro-vascular disease and the development of end organ damage common to hypertension and obesity-associated clinical disorders. Thus, the clinical assessment of the microcirculation offers an important tool in disease risk stratification [8] and of the evaluation of the impact of both non modifiable (age) [5] and modifiable (lifestyle and environmental) [7] risk factors. However, given the lack of heterogeneity across microvascular beds and the lack of standardized tools to investigate microvascular function in humans routinely, the quantitative clinical evaluation of microvascular deficits remains a challenge [6]. David Strain and colleagues [8] review the microcirculation in epidemiology and how large this website scale epidemiological studies have identified the
associations between disordered microvascular control and subsequent target organ damage. They provide examples of how measuring microvascular status in large cohorts and epidemiological modeling have helped to establish the nature of the complex bidirectional interaction between microcirculatory for outcome measures and end organ damage
and how this in turn may inform prospective studies, intervention trials, and drive change in clinical practice. One such example is the interplay between diabetic nephropathy, metabolic syndrome and atherosclerosis. Strain and colleagues highlight this complexity in a series of reports on inter-ethnic comparisons between those of European and African Caribbean descent. While it might be anticipated that African Caribbeans have better microvascular function given that they are known to be relatively protected from atherosclerotic disease, paradoxically, the opposite is observed with the general African Caribbean population having attenuated microvascular function compared with Europeans. Findings from other large epidemiology studies, while supporting the role of microcirculatory dysfunction in the etiopathogenesis of cardiovascular disease, challenge the axiom that there is a “gold standard” endothelial assessment tool and that the same mechanisms underlie endothelial dysfunction across all vascular beds.