Additional virulence genes influenced by CovRS include ska (encod

Additional virulence genes influenced by CovRS include ska (encoding streptokinase), sagA (encoding streptolysin S), sda (encoding streptococcal DNase) and

speB (encoding a cysteine protease) [11, 12]. CovRS activity modulates the transcriptome during growth in human blood [13]. Furthermore, mutations in CovRS lead to strains with enhanced virulence in animal models of skin and soft tissue infections [8, 9, 12]. A paper by Trevino et al. published during the review of this work investigated the influence of CovS on the CovR-mediated repression of GAS virulence factor-encoding genes [14]. The GSK1210151A nmr first step in GAS infection is the adherence of GAS to epithelia of the skin and respiratory tract, a process that is intensively studied on the molecular level [15–17]. This phenomenon is supported by host extracellular matrix proteins, such as collagen and fibronectin. The mechanism of adherence is enabled mainly by specific adhesion components on the GAS surface commonly termed MSCRAMMs

(for microbial surface components recognizing adhesive matrix molecules) [16], which are under the control of several single response regulators and several two-component systems. Selleck PND-1186 Furthermore, the expression profile of the GAS MSCRAMMs is time – and serotype-dependent [16]. The initial adhesion process of GAS to matrix protein coated or an uncoated surface essentially contributes to the biofilm formation, a novel described feature of many clinically important serotypes of GAS [17]. Former studies showed

that CovRS regulation appears to be critical for biofilm formation [18]. Ribonucleotide reductase Recently, studies on biofilm regulation revealed, that streptococcal regulator of virulence (Srv) is also required for biofilm formation [19]. Increasing evidence now suggests that many GAS virulence traits and even the polarity of transcriptional regulatory circuits are serotype- and sometimes strain-specific [20, 21]. Consequently, the importance of serotype- or strain- dependent CovS contribution to S. pyogenes pathogenesis was investigated. The CovS sensor kinase part of the two-component system was inactivated by insertional mutagenesis in different M serotype GAS strains and the wild type and isogenic mutant pairs were Tanespimycin solubility dmso subsequently tested for biofilm formation, capsule expression, survival in whole human blood, and adherence to keratinocytes. Methods Bacterial strains and culture conditions M49 strain 591 is a skin isolate provided from R. Lütticken (Aachen, Germany). The M2, M6 and M18 serotypes GAS strains are clinical isolates obtained from the collection of the Centre of Epidemiology and Microbiology, National Institute of Public Health, Prague, Czech Republic, and have been previously described [22]. E. coli DH5α was used as the host for plasmid constructions and was grown at 37°C with shaking in Luria broth. The GAS strains were cultured in static Todd-Hewitt broth (THB, Invitrogen) supplemented with 0.

However, this expression is even higher in strains with the chvI

However, this expression is even higher in strains with the chvI null mutation. Iron is an important micronutrient found in many cofactors required for cytochrome and nitrogenase activity. Its acquisition however is difficult for two main reasons. First, it is poorly soluble at pH 7, and secondly, a high concentration of iron can cause the generation of hydroxy radicals. Bacteria produce siderophores to scavenge

iron and therefore control iron availability. A tight control over the production of siderophore is thus important. The lack or the overproduction of rhizobactin 1021 by S. meliloti impairs the symbiotic relationship with alfalfa [29]. Mutation of rirA derepresses rhizobactin production and as a result causes a growth defect of the strain relative Aurora Kinase inhibitor to the presence of iron [33]. The reduced viability of the rirA mutant due to oxidative stress suggested that perhaps this strain would also be affected in its symbiotic properties but it was not the case [33]. This study suggested that in planta another unknown regulatory system might control the production of rhizobactin. Whether ExoS/ChvI might be the system responsible awaits further investigation. Another important finding is the confirmation that ChvI is involved in activation of the expression of SMb21189, SMb21190, and msbA2. These genes have only been described recently in the literature

although msbA2 in DCLK1 particular may play an important but incompletely defined role in symbiosis [34, 35], and the operon has already been shown to be Raf inhibitor subject to ChvI

regulation [17]. SMb21189 selleck chemicals and SMb21190 encode glycosyltransferases and msbA2 is part of an ABC-transporter family involved in macromolecule export. The above mentioned recent studies proposed that the operon including SMb21188, a putative acyltransferase, is involved in the production and export of an unknown polysaccharide which uses intermediates from the succinoglycan production pathway. The regulation of this operon by ExoS/ChvI is therefore the closest link to the succinoglycan-deficient phenotype of exoS and chvI mutant strains. Although this ChvI-regulated operon is not required for succinoglycan production it seems to be functionally related to succinoglycan production. The third operon that we confirmed to be differentially regulated by ChvI encodes proteins putatively involved in fatty acid β-oxidation. SMc00262 putatively produces a 3-ketoacyl-CoA and SMc00261, a fatty-acid-CoA ligase. These genes are also followed by SMc00260 coding for a putative short-chain dehydrogenase and SMc00259 coding for a hypothetical protein. Upstream of these genes lay genes for a transcriptional regulator of the IclR family (SMc00263) and another short-chain dehydrogenase (SMc00264). Our earlier studies failed to demonstrate a phenotype for SMc00260 and SMc00264 mutants [36].

However, we must point out that

the

However, we must point out that

the selleck inhibitor host strain used to generate the stm6 mutant is a low H2 producer compared to other Chlamydomonas WT strains such as  CC-124 and D66. It would be more useful if the stm6 mutant genotype were genetically transferred to one of these high H2-producing WT strains to increase the chance that it will achieve higher conversion efficiencies in the future. Barrier: photosynthetic efficiency The concept of decreasing the chlorophyll antenna size of the LXH254 supplier photosystems to increase the light utilization efficiency of algal mass cultures has been proposed in the past (Melis et al. 2000; Melis and Chen 2005). Research efforts to test it have focused on using random mutagenesis and high-throughput screening to aid the identification of genes that regulate the Chl antenna size in green alga. This work has resulted in strains with gradually smaller Trichostatin A antenna sizes and increasing photosynthetic productivity (Polle et al. 2003; Tetali et al. 2007; Mitra and Melis

2010; Kirst et al. 2012a, b). Analysis of the Chlamydomonas tla1 truncated antenna mutant proved that the concept is also successful in increasing H2 productivity. Kosourov et al. 2011 immobilized WT and tla1 sulfur-deprived mutant cells on alginate fims and monitored long-term H2-photoproduction activity under light intensities ranging from 19 to 350 μE m−2 s−1PAR. They showed that the mutant was able to produce H2 gas for over 250 h under all light conditions tested and exhibited a 4–8 times higher maximum specific rate between 285 and 350 μE m−2 s−1, compared to WT cells. Along the same line, RNAi knockdowns of the light-harvesting complexes M1, 2, and 3 were performed to reduce the antenna size and optimize light capture by Chlamydomonas. LHCBM1, 2, and 3 are known to be the most abundant Inositol oxygenase LHC proteins, and knocking them down simultaneously reduced the total chlorophyll content of the cells—resulting in improved light penetration and utilization. This multiple mutant displayed higher

photosynthesis light saturation level and did not suffer photoinhibition under saturating light intensity. Upon sulfur deprivation, the mutant strain showed an immediate onset of H2 production, indicating that the intracellular O2 levels were already poised to induce HYDA transcription. Furthermore, the rate of H2 production observed in this strain was twice as high as that of the stm6GLC4 (Oey et al. 2013) described below. As mentioned in the previous section, both the tla and the lhcb mutants are being or have been introduced into strains that are not limited by the non-dissipation of the proton gtradient and will continue to serve as the host for other strains expressing additional useful traits.

For both LTQ/ETD and LTQ/Orbitrap experiments, dynamic exclusion

For both LTQ/ETD and LTQ/Orbitrap experiments, dynamic exclusion was used with one repeat count, 35s repeat duration, and 40s exclusion duration. All samples were analyzed in random order, in order to eliminate quantitative false-positives arising from peptide degradation www.selleckchem.com/products/tpx-0005.html and analytical artifacts such as possible drift in nano-LC or MS performance. see more protein identification and quantification Peptide/protein identification was first performed with BioWorks 3.3.1 embedded

with Sequest (Thermo Scientific), against the genome sequence of H. influenzae strain 11P6H in the form of 53 contigs.The precursor mass tolerances were 10 ppm and 1.5 mass units, respectively, for Orbitrap and LTQ; the mass

tolerance for the fragments of both CID and ETD was 1.0 unit. A stringent set of score filters was employed. Correlation score (Xcorr) criteria were as follows: ≥4 for quadruply-charged (4+) and higher charge states, ≥3 for 3+ ions, ≥2.2 for 2+ ions, and ≥1.7 for 1+ ions. The CID results were further analyzed using Scaffold 2 proteome software (Portland, selleck compound OR) which integrates both Protein Prophet and Peptide Prophet: additional criteria were that two unique peptides must be identified independently for each protein, the peptide probability must be 95% or higher, and the protein probability must be 99% or higher.For ETD spectra, a final score (Sf) of 0.85 was required for each identification. A commercial label-free quantification package, Sieve (Fiona build, v. 1.2, Thermofisher Scientific), was used for comparing relative abundance of peptides and proteins between the control and experimental groups. Briefly, the chromatographic peaks detected by Orbitrap were aligned and the peptide peaks were detected with a minimum signal intensity of 2×105; peptide extracted ion current (XIC) peaks were matched by their retention time (± 1 min after peak alignment) and mass (± 0.025 unit) among sample runs. Each subset

of matched peaks was termed a “”frame”".The area under the curve (AUC) of each matched peptide within a frame was calculated and compared to the corresponding peak PLEK2 in the control sample. Fisher’s combined probability test was performed to determine whether there was any significant difference in peptide abundances between the two experimental groups. Relative abundance of an individual protein was calculated as the mean AUC ratio for all peptides derived from that protein. All proteins differing significantly between the two groups were confirmed by a stringent manual inspection of the fragmentation spectra and the XIC of the ions within a 3-min elution window. Acknowledgements This work was supported by NIH grant AI 19641 (TFM) and the Department of Veterans Affairs.

Conclusion Successful management

of IAI is multi-factoria

Conclusion Successful management

of IAI is multi-factorial. Source control is of primary importance. Prompt and judicious antibiotic therapy is also necessary. Appropriate antibiotic therapy requires patient risk stratification. Duration of antibiotic treatment should be limited to one week, followed by re-evaluation and intervention as needed. References https://www.selleckchem.com/products/tideglusib.html 1. Wittmann DH, Schein M, Condon RE: https://www.selleckchem.com/products/ABT-263.html management of secondary peritonitis. Ann Surg 1996, 224 (1) : 10–18.PubMedCrossRef 2. Pieracci FM, Barie PS: Management of severe sepsis of abdominal origin. Scand J Surg 2007, 96 (3) : 184–196.PubMed 3. Merlino JI, SB431542 purchase Yowler CJ, Malangoni MA: Nosocomial infections adversely affect the outcomes of patients with serious intraabdominal infections. Surg Infect

(Larchmt) 2004, 5 (1) : 21–27.CrossRef 4. Solomkin JS, Mazuski JE, Bradley JS, Rodvold KA, Goldstein EJ, Baron EJ, O’Neill PJ, Chow AW, Dellinger EP, Eachempati SR, Gorbach S, Hilfiker M, May AK, Nathens AB, Sawyer RG, Bartlett JG: Diagnosis and management of complicated intra-abdominal infection in adults and children: guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Surg Infect (Larchmt) 11 (1) : 79–109. 5. Solomkin JS, Mazuski JE, Baron EJ, Sawyer RG, Nathens AB, DiPiro JT, Buchman T, Dellinger EP, Jernigan J, Gorbach S, Chow AW, Bartlett J: Guidelines for the selection

of anti-infective agents for complicated intra-abdominal infections. Clin Infect Dis FER 2003, 37 (8) : 997–1005.PubMedCrossRef 6. Sola R, Soriano G: Why do bacteria reach ascitic fluid? Eur J Gastroenterol Hepatol 2002, 14 (4) : 351–354.PubMedCrossRef 7. Marshall JC, Innes M: Intensive care unit management of intra-abdominal infection. Crit Care Med 2003, 31 (8) : 2228–2237.PubMedCrossRef 8. Williams JD, Coles GA: Gram-positive infections related to CAPD. J Antimicrob Chemother 1991, 27 (Suppl) : B31–35. 9. Ljubicic N, Spajic D, Vrkljan MM, Altabas V, Doko M, Zovak M, Gacina P, Mihatov S: The value of ascitic fluid polymorphonuclear cell count determination during therapy of spontaneous bacterial peritonitis in patients with liver cirrhosis. Hepatogastroenterology 2000, 47 (35) : 1360–1363.PubMed 10. Adam EJ, Page JE: Intra-abdominal sepsis: the role of radiology. Baillieres Clin Gastroenterol 1991, 5 (3 Pt 1) : 587–609.PubMedCrossRef 11. Crandall M, West MA: Evaluation of the abdomen in the critically ill patient: opening the black box.

(DOC 924 KB) Additional file 2 : Figure S2 Non-coverage rates at

(DOC 924 KB) Additional file 2 : Figure S2. Non-coverage rates at the phylum level. The figures show the non-coverage rates of different primers at the phylum level: A Primer 27F; B Primer 338F; C Primer 338R; D Primer 519F; E Selleck CFTRinh-172 Primer 519R; F Primer 907R; G Primer 1390R; and H Primer 1492R. (DOC 214 KB) Additional file 3 : Table S1; Table S2; Table S3; Table S4; Table S5. Primer binding-site sequence variants. Frequently observed sequence

variants at different primer binding sites are listed in different tables: Table S1 Primer 27F; Table S2 Primer 338F; Table S3 Primer 338R; Table S4 Primer 519F; and Table S5 Primer 907R. (DOC 258 KB) Additional file 4 : Figure S3. Elimination of primer contamination. The figure shows the elimination of sequences that are thought to lack correct primer trimming in the Akt inhibitor RDP dataset. (DOC 463 KB) References 1. Olsen GJ, Lane DJ, Giovannoni SJ, Pace NR, Stahl DA: Microbial ecology and evolution: a ribosomal RNA approach. Annu Rev Microbiol 1986, 40:337–365.CYT387 manufacturer PubMedCrossRef 2. Schmidt TM, Delong EF, Pace NR: Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol 1991, 173:4371–4378.PubMed 3. Sharkey FH, Banat IM, Marchant R: Detection and quantification of

gene expression in environmental bacteriology. Appl Environ Microb 2004, 70:3795–3806.CrossRef 4. Steffan RJ, Atlas RM: Polymerase chain reaction: applications in environmental microbiology. Annu Rev Microbiol 1991, 45:137–161.PubMedCrossRef 5.

Forney LJ, Zhou X, Brown CJ: Molecular microbial ecology: land of the one-eyed king. Curr Opin Microbiol 2004, 7:210–220.PubMedCrossRef 6. Smith S, Vigilant L, Morin PA: The effects of sequence length and oligonucleotide Thiamet G mismatches on 5′ exonuclease assay efficiency. Nucleic Acids Res 2002, 30:e111.PubMedCrossRef 7. von Wintzingerode F, Gobel UB, Stackebrandt E: Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 1997, 21:213–229.PubMedCrossRef 8. Polz MF, Cavanaugh CM: Bias in template-to-product ratios in multitemplate PCR. Appl Environ Microb 1998, 64:3724–3730. 9. Reysenbach AL, Giver LJ, Wickham GS, Pace NR: Differential amplification of rRNA genes by polymerase chain reaction. Appl Environ Microb 1992, 58:3417–3418. 10. Baker GC, Smith JJ, Cowan DA: Review and re-analysis of domain-specific 16S primers. J Microbiol Meth 2003, 55:541–555.CrossRef 11. Huws SA, Edwards JE, Kim EJ, Scollan ND: Specificity and sensitivity of eubacterial primers utilized for molecular profiling of bacteria within complex microbial ecosystems. J Microbiol Meth 2007, 70:565–569.CrossRef 12. Wang Y, Qian PY: Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One 2009, 4:e7401.PubMedCrossRef 13.

Figure 5 CV curves of the CZTSe NC thin films and the energy leve

Figure 5 CV curves of the CZTSe NC thin films and the energy level diagram. Vorinostat (a) CV curves of the CZTSe NC thin films before and after ligand exchange by 550°C selenization. (b) The energy level diagram before the formation of heterojunction in CZTSe solar cells. Figure 5b shows the individual energy level of ZnO, CdS, and the absorption layer used for CZTSe solar cells. The HOMO-LUMO levels of the absorption layer by selenization before and after ligand exchange listed in Table 1 are determined from the onset oxidation and reduction

potentials according to Equations 2 and 3. It can be seen that the HOMO and LUMO energy levels of the CZTSe layer shift downwards after ligand exchange. If CZTSe solar cells are structured, CZTSe, CdS, and ZnO are in close contact with each other to form a heterojunction. The carrier will transfer between these Dibutyryl-cAMP semiconductors until the three kinds of materials form the unified Fermi level and the heterojunction

is in thermal equilibrium state. After ligand exchange, the conduction band of the CdS layer is above that of the CZTSe layer, which is in accordance with the real condition of the CZTSe solar cell. A type I band alignment is more conveniently formed at the CdS/CZTSe interface. This structure acts as the barrier against injection electrons from ZnO to the CZTSe layer, and recombination between majority carriers is not formed [40]. Meanwhile, this structure acts as the barrier against photogenerated electrons in CZTSe, Protein kinase N1 too. Photogenerated electrons cannot cross over the barrier if the

height of this barrier at the CdS/CZTSe interface becomes over 0.4 eV. The height should be modestly controlled to keep J sc constant [40]. However, before ligand exchange, the conduction band of the CdS layer is below that of the CZTSe layer and a type II band alignment is formed at the CdS/CZTSe interface. This structure will cause recombination between majority carriers at the interface, and the entire recombination increases with increasing absolute value of conduction band difference between CdS and CZTSe layer [40]. As a result, the open circuit voltage of the CZTSe solar cell will become higher after ligand exchange due to the type I band alignment structure and the Savolitinib datasheet depression of recombination. Conclusions In conclusion, we synthesized pure tetragonal-phase structure CZTSe NCs with the size of about 3 nm by a facile one-step synthesis. For potential application in CZTSe solar cells, the physical mechanism of utilizing energy level alignment for reducing recombination was discussed in depth after ligand exchange. It was found that the removal of large organic molecules on CZTSe NCs after ligand exchange by S2− decreased the resistivity.

Similarly, in Clostridium difficile, genes encoding many ribosoma

Similarly, in Clostridium difficile, genes encoding many see more ribosomal proteins were coordinately up-regulated by antibiotics such as amoxicillin, clindamycin, and metronidazole [38]. Therefore, it is conceivable that the up-regulation of the genes encoding ribosomal proteins of polyP- exposed P. gingivalis (Table 4) may reflect a compensatory response for slower or disturbed function of the ribosome. Table https://www.selleckchem.com/products/OSI-906.html 4 Differentially expressed genes related to ribosome Locus no. a Putative identification a Avg fold difference b Protein synthesis : Ribosomal proteins PG0037 50S ribosomal protein L19 3.23 PG0167 Ribosomal protein L25 1.86 PG0314 Ribosomal protein

L21 1.90 PG0315 50S ribosomal protein L27 1.78 PG0385 Ribosomal protein S21 3.98 PG0592 50S ribosomal protein L31 4.01 PG0656 50S ribosomal protein L34 6.80 PG0989 50S ribosomal protein L20 3.43 PG0990 Ribosomal protein L35 1.74 PG1723 Ribosomal protein S20 2.94 PG1758 Ribosomal protein S15 6.23 PG1959 Ribosomal protein L33 2.02 PG1960 Ribosomal protein L28

2.03 PG2117 30S ribosomal protein S16 2.93 PG2140 Ribosomal protein L32 3.40 PG0205 Peptide chain release factor 3 1.50 aLocus number, putative identification, and cellular role are according to the TIGR genome database. bAverage fold difference indicates the expression of the gene by polyP addition versus no polyP addition. Osimertinib nmr Meanwhile, ribosome biosynthesis of bacteria is governed by transcriptional and translational regulatory mechanisms that provide a balanced and coordinated production of individual ribosomal components [41]. It has been suggested that some free ribosomal proteins act as autogenous feedback inhibitors that cause selective translational inhibition from of the synthesis of certain ribosomal proteins whose genes are in the same operon as their own. This inhibition is due to the structural homology between certain ribosomal protein binding regions on 16S rRNA and the mRNA target site for the

ribosomal protein [42-44]. Although autogenous regulation is known to be a general strategy of balancing ribosomal protein synthesis in bacteria [41], mechanisms for controlling ribosomal protein gene expression in P. gingivalis have not yet been characterized. Further studies will be needed to elucidate the regulatory mechanisms involved in ribosomal protein synthesis in P. gingivalis. Transposon functions The majority of the up-regulated genes related to mobile and extrachromosomal element functions were the genes encoding transposases (Table 5). Transposition is generally known to be triggered by cellular stress, i.e., nutritional deficiency, chemicals, and oxidative agents. Little is known about the transposition in P. gingivalis, but up-regulation of transposase-related insertion sequence elements was noticed in P.

Scand J Infect Dis 2006,38(6–7):552–555 PubMedCrossRef Competing

Scand J Infect Dis 2006,38(6–7):552–555.PubMedCrossRef Competing interests The authors declare that they have no competing

interests. Authors’ contributions GG conceived the study and have made substantial contribution to acquisition, analysis and interpretation of data. NJ, K and JFR equally have contributed substantially to conception and design and provided important review of the manuscript for significant intellectual content. NJ also gave final approval of the article to be published. All authors read and approved the final manuscript.”
“Background Sepsis is a serious clinical syndrome resulting from a host’s systemic inflammatory selleck screening library response to infection [1]. When severe, it is associated with high mortality, greater in patients IWR-1 in vitro with septic shock (40-70%), than in those with sepsis alone (25-30%). The syndrome is nowadays considered as a major international health care problem [2, 3]. Bloodstream infection is commonly

associated with the development of sepsis and requires microbiological diagnosis usually performed by traditional culture, detection and identification of the causative pathogens of the systemic inflammatory response syndrome (SIRS) [3–5]. However, culture routinely takes several days before a positive result is available [6]. This gap between the initial clinical suspicion and the GDC-0973 datasheet confirmation of infection by culture results could result in a poor clinical outcome of the septic patient [7, 8]. The long total turnaround time (TAT) which characterizes traditional culture methods encourages clinicians in empirical antimicrobial therapy as a safety-first filipin strategy. The delay in appropriate antimicrobial therapy is associated with increased mortality [7, 8]. Therefore, there is an urgent need to introduce techniques, with a reduced TAT, which allow the clinicians to set therapeutic regimens in the earlier stages of sepsis. Molecular methods seem to be an appropriate

choice, they are widely used in the diagnosis of BSIs, along side to the conventional methods. Molecular techniques are based on amplification of nucleic acids, species-specific hybridization, microarray technology and gene sequencing [9]. However, these techniques involve significantly increased cost and technical complexity, both of which are likely to hamper their adoption in the laboratory routine in the clinical setting. Fluorescent in-situ hybridization (FISH) technique is based on fluorescently labelled oligonucleotide probes complementarily binding to specific target sequences in the ribosomal RNA of bacteria, yeasts or other organisms. The most commonly used target for FISH in prokaryotes is 16S rRNA, as it contains both highly stable and variable regions. However, the 23S rRNA in prokaryotes and the 18S and 28S rRNA in eukaryotes, as well as mRNA have also been used as FISH targets [10].

The sequence of the stkP gene from 50 clinical isolates and 6 ref

The sequence of the stkP gene from 50 clinical isolates and 6 reference strains was determined. The stkP gene in each strain was amplified by PCR using oligonucleotides complementary to sequences at -10 and +1997 see more of the gene. In each case, a 2007 bp DNA fragment was obtained and the nucleotide sequences confirmed that

they corresponded to stkP. There were 61 segregating sites (S) with a rate of segregating sites per site (pS) of 0.033, resulting in 27 allelic variants with an average of 10.26 nucleotides substitutions per sequence. Analysis of the encoded amino-acid sequences revealed 11 segregating sites (S) and a rate of segregating sites per site (pS) of 0.020, resulting in 12 allelic variants (including strain R6) with an average of 1.37 amino acid substitution per sequence (Additional file 1: Table ST1 and Figure 1). Thus, www.selleckchem.com/products/geneticin-g418-sulfate.html the full-size StkP protein is well conserved in invasive and colonising clinical isolates and independent of their penicillin-resistance character. Figure 1 Inference of phylogenetic history of StkP from 56 strains using the Maximum Parsimony method. A number was given to each branch corresponding to the StkP alleles. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates)

are shown next to the branches. We considered PASTA domains and kinase domains individually: nucleotide divergence was higher in the 5′ terminal part of the

gene encoding the kinase module (d = 0.0072; S.E.: 0.0013) than in the 3′ part of the gene encoding the PASTA modules (d = 0.0048; S.E.: 0.0011). By contrast, Thalidomide amino acid divergence was higher in the PASTA domains (d = 0.0037; S.E.: 0.0011) than in kinase domain (d = 0.0012; S.E.: 0.0007). The distribution of the amino acid allelic variants of StkP into penicillin-resistance classes was assessed (Figure 1): alleles 2, 3, 5, 6, 7, 8, 10 and 11 were found in penicillin-susceptible strains and alleles 1, 4, 9 and 12 were found both in penicillin-Dorsomorphin solubility dmso resistant and -sensitive strains (Additional file 1: Table ST1). The StkP amino acid sequence divergence was similar among penicillin-susceptible strains (d = 0.0027; S.E.: 0.0009), penicillin-intermediate strains (d = 0.0015; S.E.: 0.0009) and highly resistant strains (d = 0.0017; S.E.: 0.0011). To evaluate the effects of the StkP mutations on its kinase, a model of the enzymatic domain, amino acid 4 to 274, based on the sequence of the strain R6 was developed (Accession number: NP_359169) (Figure 2). The mutations carried by the various alleles were located outside of the catalytic site and appeared unlikely to affect the ATP binding site. Thus, these clinical isolates are unlikely to carry loss of kinase function mutations. Figure 2 Predicted structure of the kinase catalytic domain of StkP. (A) Image of backbone with oxygens of the StkP kinase domain (4–274).